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Algorithmic decision making
 Refers to data-driven decision making

 By learning over data about past decision outcomes
 Increasingly influences every aspect of our life 

Search, Recommender,
Reputation Algorithms

Match / Market-Making
Algorithms

Risk Prediction 
Algorithms



Concerns about their fairness
 Discrimination in predictive risk analytics

 Opacity of algorithmic (data-driven) decision 
making

 Implicit biases in search and recommender systems 



Focus on discrimination
 Discrimination is a specific type of unfairness
 Well-studied in social sciences

 Political science
 Moral philosophy
 Economics
 Law

 Majority of countries have anti-discrimination laws
 Discrimination recognized in several international human rights laws

 But, less-studied from a computational perspective



What is a computational perspective?
Why is it needed?



Defining discrimination
 A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons 
based on their membership in some salient social group 
e.g., race or gender

 Challenge: How to operationalize the definition?
 How to make it clearly distinguishable, measurable, & 

understandable in terms of empirical observations



Need to operationalize 4 fuzzy notions
1. What constitutes a relative disadvantage?

2. What constitutes a wrongful imposition?

3. What constitutes based on?

4. What constitutes a salient social group?
1. Defined by anti-discrimination laws: Race, Gender



Case study: Recidivism risk prediction
 COMPAS recidivism prediction tool

 Built by a commercial company, Northpointe, Inc.

 Estimates likelihood of criminals re-offending in future
 Inputs: Based on a long questionnaire
 Outputs: Used across US by judges and parole officers

 Trained over big historical recidivism data across US 
 Excluding sensitive feature info like gender and race



COMPAS Goal: Criminal justice 
reform
 Many studies show racial biases in human judgments

 Idea: Nudge subjective human decision makers with 
objective algorithmic predictions
 Algorithms have no pre-existing biases
 They simply process information in a consistent manner

 Learn to make accurate predictions without race info.
 Blacks & whites with same features get same outcomes
 No disparate treatment & so non-discriminatory!



Is COMPAS non-discriminatory?
Black Defendants

High Risk Low Risk
Recidivated 1369 532

Stayed Clean 805 990

White Defendants
High Risk Low Risk

505 461
349 1139
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Is COMPAS non-discriminatory?

 ProPublica: False positive & negative rates are considerably 
worse for blacks than whites!
 Constitutes discriminatory disparate mistreatment

Black Defendants
High Risk Low Risk

Recidivated 1369 532
Stayed Clean 805 990

White Defendants
High Risk Low Risk

505 461
349 1139

False Positive Rate: 805 / (805 + 990) = 0.45    >>   349 / (349 + 1139) = 0.23   

False Negative Rate: 532 / (532 + 1369) = 0.29  <<  461 / (461 + 505) = 0.48 



COMPAS study raises many questions 
 Why does COMPAS show high racial FPR/FNR disparity?

 Despite being trained without race information

 Can we train COMPAS to lower racial FPR/FNR disparity?



How COMPAS learns who recidivates



 By finding the optimal (most accurate / least loss) 
linear boundary separating the two classes

How COMPAS learns who recidivates



How COMPAS learns to discriminate

 Observe the most accurate linear boundary
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How COMPAS learns to discriminate

 Observe the most accurate linear boundary
 Makes few errors for yellow, lots of errors for blue!

 Causes disparate mistreatment – inequality in error rates 



How to train non-discriminatory 
classifiers? [WWW ‘17]

Synthesis:



How to learn to avoid discrimination
 Specify discrimination measures as learning constraints
 Optimize for accuracy under those constraints

 The constraints embed ethics & values when learning

 No free lunch: Additional constraints lower accuracy!
 Need race info in training to avoid disp. mistreatment!

P(ypred ≠ ytrue | race=B) = P(ypred ≠ ytrue | race=W)

P(ypred ≠ ytrue)min



Evaluation: Do our constraints work?
 Gathered a recidivism history dataset

 Broward Country, FL for 2013-14
 Features: arrest charge, #prior offenses, age,...
 Class label: 2-year recidivism

 Traditional classifiers without constraints
 Acc.: 67% FPR Disparity: +0.20 FNR Disparity: -0.30 

 Training classifiers with fairness constraints
 Acc.: 66% FPR Disparity: +0.03 FNR Disparity: -0.11



Take-aways for ethical machine learning
Lessons from the COMPAS story



High-level insight: Ethics & Learning
 Learning objectives implicitly embody ethics

 By how they explicitly define trade-offs in decision errors

 Traditional objective accuracy reflects utilitarian ethics
 The rightness of decisions is a function of individual outcomes
 The desired function is maximizing sum of individual utilities

 Lots of scenarios where utilitarian ethics fall short
 Change learning objectives for other ethical considerations

 E.g., non-discrimination requires equalizing group-level errors



Three challenges with ethical learning  
 Operationalization:

 How to formally interpret fairness principles in different 
algorithmic decision making scenarios?

 Synthesis:
 How to design efficient learning mechanisms for different 

fairness interpretations?

 Analysis:
 What are the trade-offs between the learning objectives?



From Algorithmic Decision Making
To Algorithm-Aided Decision Making 
[CSCW ’20]

Ongoing work:



Algorithm-aided Decision Making
 Algorithmic systems are rarely autonomous in practice

 There is often human oversight
 In recidivism risk prediction, they advice human judges

 Does fair algo. advice lead to fair human decisions?
 Advice taking is affected by

 Perceptions of risks and responsibilities for decisions
 Structure of advice,  i.e., timing, framing, representation
 Trust between algorithmic advisor and human advisee

 Should algo. advice be personalized for human biases?



From Non-Discrimination To 
Fair Algorithmic Decision Making

Looking Forward:



Moral Philosophy

Law

Communication & Media Studies

Learning Non-Discriminatory Classification

Social Welfare Theory

Social Choice Theory                                                             

Behavioral Economics

Regression

Set Selection

Ranking 

Matching

Clustering
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