| Module Title | Technological Cycles: Materials and Processes | |------------------------------|---| | Code | MCCf113 | | | | | Degree Programme | Master of Science - Circular Innovation and Sustainability | | ECTS Credits | 3 | | Workload | 90 hours 12 hours contact teaching 70 hours self-study ~8 hours Excursion | | Module Coordinator | Name: Prof. Dr. Heiko Thömen Phone: +41 (0) 32 344 03 31 Email: heiko.thoemen@bfh.ch Address: BFH - AHB, Solothurnstrasse 102, 2533 Biel-Bienne | | Lecturers | <u>Prof. Dr. Simon Kleiner;</u> TI <u>Prof. Dr. Cornelius Oesterlee;</u> AHB <u>Michael Stalder;</u> TI | | Entry Requirements | Prerequisite: • MCCf013 Introduction to Circular Economy and Scientific Literature • MCCf026 Bridging Technology Recommended: • MCCf036 Bridging Life Sciences | | Competencies upon Completion | Competencies After completing the module, students will be able to: present and analyse technological cycles of commonly used materials such as metal, glass, wood-based products, concrete, plastics; recognize existing recycling or remanufacturing supply chains and report on the volumes and challenges of re-used and recycled materials; describe the most important recycling and remanufacturing technologies and processes; describe emerging technologies relating to different types of fossil and biogenic materials; identify the most appropriate technologies, materials and processes for a given application; assess and determine which materials have the greatest recycling and remanufacturing potential for a given application. Outcomes | | | After completing the module, students will be able to: describe sorting and recycling technologies for plastics, metals, wood, and mineral construction materials; understand the complexity at the end of life of multi-material products. | | Content | Closing product loops requires knowledge of the processing and manufacturing technology of the materials used, as well as awareness of their production chains and stakeholders. The module covers recycling/remanufacturing of the most important materials, including biogenic materials. The general overview is supplemented by selected cases, for example from the construction or transport sectors. | |----------------------------------|---| | Teaching and Learning
Methods | Input lectures Flipped classroom Project-Based Learning Case studies Excursions Learning videos | | Competency
Assessment | Final written exam, closed book (100 %) | | Mode of Repetition | Should a student fail the module, they have one more attempt. They may either: Retake a written exam (100%) during the next resit examination session. Repeat the full module next time it is offered. | | Format | 2 lessons per week over 7 weeks and 2 excursions | | Attendance | Not mandatory | | Module Type | Compulsory | | Timing of the Module | Autumn Semester, Calendar Weeks 47 to 51 and 02 to 03 | | Venue | Onsite Brückenstrasse 73, 3005 Bern | | Literature | Worrel, E., Reuter, M. (eds.) (2014). Handbook of Recycling: state-
of-the-art for practitioners, analysts, and scientists. Elsevier.
ISBN: 978-0-12-396459-5 Further literature may be indicated throughout the course. | | Language | English | | Links to Other Modules | MCCf123 Biological Cycles: Natural Resources and Ecosystem Services MCCf173 Circular use of materials MCCf323 Society and Environment MCCf453 Circular design | | Last Update | June 2024 |