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Abstract

Biological pest control is an environmentally-friendly alternative to synthetic pesticides, using organ-
isms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and combining dif-
ferent biocontrol agents could improve success rates. To date, little is known about the compatibility
and the efficacy of parasitoid wasps and microbial agents when used in combination. To fill this gap,
we conducted a systematic review of studies combining a parasitoid with an entomopathogenic virus,
bacteria or fungus. We hypothesised that the effects could be positive and that more efficient pest
control could be achieved through combining agents. We searched in Web of Science and extracted data
from 49 publications matching the pre-defined inclusion criteria. Combinations of 36 hymenopteran
parasitoids with 17 entomopathogenic microorganisms used to control 31 target pests were found.
Trichogramma pretiosum and Encarsia formosa were the most frequently studied parasitoids, while
Beauveria bassiana, Metarhizium anisopliae, Lecanicillium muscarium, Bacillus thuringiensis var.
kurstaki, the Spodoptera exigua multiple nucleopolyhedrovirus, and the Spodoptera frugiperda multiple
nucleopolyhedrovirus were the main microbial agents assessed. Out of 49 parasitoid-microorganism
combinations assessed in the laboratory experiments, 38 were reported as compatible and six as in-
compatible. Timing and dosage of biopesticides played a crucial role, with later application and appro-
priate dosage minimizing adverse effects on parasitoid development. Combinations, including parasi-
toids and fungi, were well represented in the literature. In contrast, few experiments combined bacteria
(11%) and viruses (9%) with parasitoids highlighting a need for further research into these types of
combinations. Moreover, most of the reviewed experiments (84%) were carried out in the laboratory.

In the light of these results, we then looked more closely at the case of the South American tomato
leafminer. Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a major threat to worldwide tomato
production, and sustainable management methods are needed. Phthorimaea operculella granulovirus
(PhopGV) and the parasitoid wasp Necremnus tutae Ribes & Bernardo (Hymenoptera: Eulophidae) were
identified as promising biocontrol agents of this pest. Since the virus is most effective against first
instar larvae, whereas the parasitoid targets older ones, we hypothesised that combining both agents
could result in increased pest control. We conducted a replicated semi-field experiment to evaluate the
control efficacy of N. tutae and PhopGV when used alone and in combination against T. absoluta and
their compatibility over an entire growth period. Four treatments were compared: 1) T. absoluta only
(control, CO); 2) T. absoluta + N. tutae (PA); 3) T. absoluta + PhopGV (VI); 4) T. absoluta + N. tutae +
PhopGV (VP). On day 0, five potted tomato plants cv. Admiro (De Ruiter) were placed in 28 walk-in cages
and 50 T. absoluta pupae were released in each cage to build an initial population. The tomato plants
in treatments VI and VP were sprayed at a high PhopGV dosage (0.015%, > 3 x 10° OB/I) upon their
introduction, on day 4 and on day 11, and at a low dosage (0.0015%, > 3 x 108 OB/I) on days 28 and
42. All further plants introduced into these treatments were sprayed at high dosage on the day of their
introduction. Plants in treatments CO and PA were sprayed with the equivalent amount of water. On day
16, thirty couples of adult parasitoids were released in each plot of treatments PA and VP. A second
release of 30 parasitoid couples was conducted on day 41. During the 9 weeks long assay, we system-
atically recorded the number of T. absoluta larvae, and measured plant damage on a weekly basis. The
number of adult T. absoluta and N. tutae was recorded once at the end of the assay.

Combining the two agents achieved the highest larval (-24%) and crop damage (-29%) reduction cumu-
lated over the entire experiment. However, there was no significant additive effect of the two agents.
At the end of the trial, which coincided with the emergence of the third generation of T. absoluta adults,
using the virus alone resulted in the strongest reduction of adult density (-78%), followed by the virus-
parasitoid combination (-59%). No negative effect of the virus was recorded on the parasitoid popula-
tion. Our results demonstrate the compatibility and potential of N. tutae and PhopGV to reduce popu-
lation growth and crop damage of T. absoluta under semi-field conditions. Predictive models show that
biocontrol intervention timing and intensity are crucial for success and cost efficiency. Therefore, fur-
ther research should be conducted to determine the appropriate doses of N. tutae and PhopGV when
applied at different times and on different population densities of T. absoluta. Moreover, new experi-
ments under field conditions are necessary to include agronomic and financial parameters in the final
compatibility assessment. While more research is needed, our findings provide important insights into
an innovative combination of biocontrol agents, thereby contributing to more sustainable agriculture.

Keywords: biological control, integrated pest management, compatibility, baculovirus, Phthorimaea
absoluta
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1 General introduction

Demographic growth and climate change pose serious challenges for the agricultural sector: global
food demand rises, while warmer temperatures lead to increased pest pressure in agricultural crops
(Skendzi¢ et al. 2021; van Dijk et al. 2021). Simultaneously, synthetic pesticides, largely used for crop
protection, face growing controversy due to adverse effects on the environment and human health
(Yadav and Devi 2017; Sharma et al. 2020). Alternative sustainable methods for pest control are sought.
Biological control is an alternative to synthetic pesticides with fewer adverse environmental effects (Col-
latz et al. 2021). Stenberg et al. (2021) define it as “the exploitation of living agents (incl. viruses) to
combat pestilential organisms (incl. pathogens, pests, and weeds) for diverse purposes to provide hu-
man benefits”. Among the most used organisms in biological control are microorganisms such as en-
tomopathogenic bacteria, fungi, and viruses, and macroorganisms such as parasitoids (Eggleton and
Belshaw 1992; Lacey et al. 2015; Qu et al. 2022). The success of biological control relies on multiple
biotic and abiotic factors (Gillespie et al. 2016; Sabbahi et al. 2022). As some of these are difficult to
manage, biocontrol efficacy and reliability can be variable. Combining different biocontrol agents could
help to minimize that problem (Roy and Pell 2000; Cossentine 2009; Quesada-Moraga et al. 2022). To
explore this topic, the case study of the South American tomato leafminer was considered.

About 190 million tons of tomatoes (Solanum lycopersicum L.) are produced annually on five million
hectares worldwide (FAO 2023). Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is a major threat to
this essential cash crop, relied on by many people (Bergougnoux 2014). It causes up to 100% yield loss
in all tomato production systems, ranging from soil grown open-field crops to high-tech greenhouse
crops (Desneux et al. 2010; Desneux et al. 2011; Biondi et al. 2018). Pest control with synthetic insec-
ticides, largely used to control T. absoluta (Desneux et al. 2010; Desneux et al. 2022), is unsustainable
as the moth species rapidly develops high levels of resistance to many chemical compounds (Guedes et
al. 2019). Moreover, synthetic insecticides harm key beneficial arthropods and disrupt existing inte-
grated pest management programmes (Abbes et al. 2015; Soares et al. 2019). Phthorimaea operculella
granulovirus (PhopGV, Baculoviridae: Betabaculovirus) and the parasitoid Necremnus tutae Ribes & Ber-
nardo (Hymenoptera: Eulophidae) were identified as interesting biocontrol agents against T. absoluta.
PhopGV has a good level of pathogenicity against the first instars of T. absoluta larvae and causes
sublethal effects such as retarded larval growth and pupation failure in the older larval instars (Mascarin
et al. 2010; Gémez Valderrama et al. 2018). N. tutae parasitizes and feeds on second to fourth instar
larvae of the pest with a distinct preference for the third instar (Calvo et al. 2013). It causes additional
mortality by host-killing (i. e. host-feeding, host-stinging). Augmentative releases of N. tutae alone seem
insufficient to keep T. absoluta damage on tomato plants below the economic threshold (Cocco et al.
2015a; Calvo et al. 2016; Desneux et al. 2022). Regarding PhopGV, high doses (weekly application of
the highest recommended concentration) are required to lethally infect T. absoluta larvae. In addition,
the most damaging older larvae are difficult to reach due to their location inside the mines, so comple-
mentary control measures are required (Gonthier et al. 2023a). Combining both biocontrol agents could
increase pest control against T. absoluta. The virus is more effective on young larvae, while the parasi-
toid targets the later instars. In addition, no adverse effects of PhopGV were detected on the develop-
ment of N. tutae under controlled conditions, indicating that both agents are compatible for combined
use (Gonthier et al. 2023a).

We first conducted a systematic review of literature aiming to synthesize the current state of the art
when combining a parasitoid with an entomopathogenic microorganism. Combining parasitoids and
microorganisms may be either positive, negative or with no effect on pest control compared with their
use alone. We hypothesised that effects can be positive and more efficient pest control can be
achieved through combining agents. We therefore assessed: 1) Which are the most studied combina-
tions of parasitoids and microorganisms? 2) Which combinations of microorganisms and parasitoids
are compatible? 3) How do microorganisms influence the life table parameters of parasitoids? 4)
Which key factors influence the compatibility of microorganisms and parasitoids? 5) Can more effi-
cient pest control be achieved by combining a parasitoid with a microorganism instead of using them
individually? In the light of the results of this systematic review, we then conducted a replicated semi-
field experiment to assess the efficacy of N. tutae, and PhopGV used alone and in combination for the
biocontrol of T. absoluta. More precisely, we addressed the following research questions: 1) Do N.
tutae and PhopGV influence the population development of T. absoluta when used alone or in combi-
nation? 2) Do N. tutae and PhopGV influence the level of crop damage caused by T. absoluta when
used alone or in combination? 3) Is the N. tutae population influenced by PhopGV under semi-field
conditions (effects on population size and sex ratio).
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2 State of research: “Entomopathogens and parasitoids allied in bio-
control: a systematic review”

To date, numerous studies have been conducted to assess the efficacy of parasitoid wasps and ento-
mopathogenic microorganisms for pest biocontrol. However, few is known about the compatibility and
the efficacy of these two types of biocontrol agents when used combined. To fill this gap, we conducted
a systematic review of studies combining a parasitoid with an entomopathogenic virus, bacteria or fun-
gus. We published the following article on 20™ July 2023 in the special issue “Application of insect
viruses as biopesticides” in Pathogens. This journal focuses on pathogens and pathogen-host interac-
tions and is published monthly online by MDPI. The article can be found under the following link:
https://www.mdpi.com/2076-0817/12/7/957. Author guidelines can be found in Annex 1 and original
data in Annex 2.
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Abstract: Biological pest control is an environmentally friendly alternative to synthetic pesticides,
using organisms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and
combining different biocontrol agents could improve success rates. We conducted a systematic review
of studies combining a parasitoid with an entomopathogenic microorganism, the first of its kind. We
searched in Web of Science and extracted data from 49 publications matching the pre-defined inclusion
criteria. Combinations of 36 hymenopteran parasitoids with 17 entomopathogenic microorganisms
used to control 31 target pests were found. Trichogramma pretiosum and Encarsia formesa were the
most frequently studied parasitoids, while Beauveria bassiana, Metarhizium anisopliae, Lecanicillium
muscarium, Bacillus thuringiensis var. kurstaki, the Spodoptera exigua multiple nucleopolyhedrovirus,
and the Spodoptera frugiperda multiple nucleopolyhedrovirus were the main microbial agents
assessed. Out of 49 parasitoid-microorganism combinations assessed in the laboratory experiments,
thirty-eight were reported as compatible and six as incompatible. Timing and dosage of biopesticides
played a crucial role, with later application and appropriate dosage minimizing adverse effects
on parasitoid development. More research is needed to assess compatibility and efficacy under
real-world conditions. Our review provides valuable insights for researchers and practitioners to
optimize the combined use of micro- and macroorganisms for effective pest control.

Keywords: pest management; microbial pesticide; parasitoid wasp; compatibility; synergism;
antagonism

1. Introduction

Biological pest control is an alternative to synthetic pesticides with fewer adverse
environmental effects [1]. Among the most used organisms in biological control are mi-
croorganisms such as entomopathogenic bacteria, fungi, and viruses. Bacillus thuringiensis
sp. (Bt) are the most widely used bacteria to control pests in agriculture, forestry, and public
health [2]. They release toxins that cause cell lysis and death after binding with specific re-
ceptors in the insect midgut [3]. Entomopathogenic bacteria have a wide host range, mainly
lepidopteran, dipteran, and coleopteran, but were reported to have minimal to no negative
effects on beneficial organisms [3]. Beauveria bassiana (Balsamo) Vuillemin, Metarhizium
sp., Paecilomyces farinosus (Holm ex S.F. Gray) Brown & Smith, and Lecanicillium muscarium
Zare & Gams (previously known as Verticillium lecanii (Zimmermann) Viegas) are the most
used fungi for insect biocontrol. They attack pests by damaging their integument or gut
epithelium, using nutrients in their hemocoel, or releasing toxins [2,3]. They are ubiquitous
in the environment, have a broad range of arthropod hosts, and often cause epizootics
in insect populations. Compatibility with arthropod predators and parasitoids should be
tested to ensure compatibility and maximize efficacy [3]. Approximately a dozen viral
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bioinsecticides are commercially available, and currently only nucleopolyhedroviruses and
granuloviruses specifically target lepidopteran pests. Viruses enter the host cells, repli-
cating in the nuclei or cytoplasm before causing cell lysis and sometimes enzootics [2,3].
Another key group for all types of biocontrol are parasitoids. Most of them belong to the
orders of the Hymenoptera and Diptera, fewer to the orders of the Coleoptera, Lepidoptera
and, Neuroptera [4]. Their larvae develop on or in the body of other arthropods and
usually kill them by their feeding. Some parasitoids parasitize eggs, while others parasitize
larvae, pupae, or even adults. Trichogramma sp. are the commercially most used parasitoids,
which develop in the eggs of Lepidoptera [5,6]. Encarsia formosa is commonly used against
whiteflies and Aphidius colemani against aphids [7].

The success of biological control relies on multiple biotic and abiotic factors. For
example, entomopathogenic microorganisms are susceptible to climatic conditions such as
temperature, humidity, and UV radiation [8]. Likewise, parasitoid longevity and efficacy
rely on factors such as host density, nectar and pollen sources, habitat composition, and
climatic conditions [9]. With some of these factors being difficult to manage, biological
control can be of variable efficacy and reliability. Combining different biocontrol agents
could minimize that problem (Figure 1). Roy and Pell [10] conducted a narrative review on
interactions between entomopathogenic fungi (EF) and other natural enemies. They found
that predators and parasitoids may foster the development of epizootics by vectoring
EF and causing increased movement of infected hosts. Several key factors that influ-
ence potential antagonistic effects when combining parasitoids with EF were mentioned:
(i) fungal dosage, (ii) relative timing of parasitism and fungal infection, and (iii) fungal
identity. More recently, Quesada-Moraga et al. [11] reviewed the compatibility between
EF and parasitoids with mixed results. Some studies concluded that parasitoids serve as
vectors of EF, even showing synergistic interactions. Other studies found that previous
inoculation with EF can impact the fitness of parasitoids, shortening their lifetime yet
increasing oviposition rates. Most studies concluded that the combination is beneficial
when, as underlined by Roy and Pell [10], release times are adjusted appropriately, with
the timing and order of agent administration being crucial. Cossentine [12] reviewed the
interactions between baculoviruses and parasitoids. In laboratory experiments, parasitoids
could reduce the pathogenicity of baculoviruses in hosts. Yet, in field trials, parasitoids did
not reduce the overall mortality caused by an applied baculovirus. Indeed, parasitoids can
spread or accelerate the spread of the virus within hosts, increasing efficacy under field
conditions. Baculoviral infections can lower parasitoid population densities, but many
parasitoids can avoid or reduce their use of virus-infected hosts, and a strategically timed
baculoviral biopesticide should have a low impact on host-parasitoid populations. The
impact of Bt-bioinsecticides on parasitoids has been reviewed recently [13] with the conclu-
sion that combining parasitoids with Bt-bioinsecticides could significantly increase crop
yield and improve pest control. However, the impact of Bt on beneficial arthropods is still
being studied due to the high number of Cry toxins untested against them. It is particularly
important to consider indirect impacts of these products on parasitoid physiology and
behaviour [13].

Given the increasing interest in biological pest control in the past decade and the
growing importance of entomopathogen agents [14,15], a new and systematic review of the
literature combining all different entomopathogens is timely. We aimed to synthesize the
state-of-the-art when combining a parasitoid with an entomopathogenic microorganism.
Combining parasitoids and microorganisms may be positive, negative, or with no effect
on pest control compared to their use alone. We hypothesized that the effects could be
positive and that more efficient pest control could be achieved through combining agents.
We, therefore, assessed: (1) Which are the most studied combinations of parasitoids and
microorganisms? (2) Which combinations of microorganisms and parasitoids are com-
patible? (3) How do microorganisms influence the life table parameters of parasitoids?
(4) Which key factors influence the compatibility of microorganisms and parasitoids?
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(5) Can more efficient pest control be achieved by combining a parasitoid with a microor-
ganism instead of using them individually?

Positive
Pest control > A or B*

—— >A+B>
=A+B->
<A+Bbut>AorB*
>

» COMPATIBILITY

A : parasitoid

Application
timing and
dosage

+

Type of No effect * COMPATIBILITY
interaction Pest control = A or B*

Negative
Pest control < A or B*

’ INCOMPATIBILITY

B : microorganism

Figure 1. Types of interactions and factors influencing the compatibility of entomopathogenic
microorganisms and parasitoids. * Comparison made with the more effective of agents A or B.

2. Materials and Methods
2.1. Search Criteria

We used the following search string in Web of Science Core Collection on 2 March
2023: ((fung* OR vir* OR entomopathog* OR “vir*-based insecticid*” OR “fung*-based
insecticid*” OR “biological insecticid*” OR “microbial insecticid*” OR “natural insecticid*”)
AND (biocontrol OR biological control)) AND (*parasit®* AND (biocontrol OR biological
control)) AND (combin* OR interaction OR substitut* OR synergist* OR antagonist*) AND
(“integrated pest control” OR “biological pest control” OR “pest biocontrol” OR “pest
populations” OR pest OR “pest management” OR IPM). We did not use any date limitation
but confined our search to journal articles in English.

2.2. Data Inclusion and Exclusion Criteria

We assessed articles by analysing abstracts following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA, [16]) (Figure S1). We obtained
547 initial hits, of which 121 were excluded as they were review articles. Based on other pre-
defined exclusion criteria, 377 further articles were excluded. Inclusion of a publication was
based on three criteria: (1) the study was an experiment concerning the biological control
of a pest; (2) the experiment combined at least a parasitoid and an entomopathogenic
fungus, bacterium, or virus; and (3) the study design included at least a no-treatment
control. Studies combining entomopathogenic nematodes with parasitoids were excluded.
Laboratory, semi-field, field, and greenhouse experiments were considered, but modelling
and simulations were excluded.

2.3. Data Extraction

We used Citavi software (version 6.11.0.0) to import the included studies. We extracted
data on (1) pest, (2) control agents, (3) crop, (4) location, (5) study design, (6) evolution of
pest and biocontrol agent populations, (7) crop damage, (8) crop yield, and (9) compatibility
of biocontrol agents from the 49 selected articles [17-65]. Each combination of biocon-
trol agents was considered an experiment, leading to 100 distinct experiments, as some
publications studied multiple combinations simultaneously. Different strains of the same
microorganism combined with one parasitoid were also counted as distinct experiments.
Data from experiments assessing multiple dosages, timing of application, and types of
exposition of the parasitoid to the microbial biocontrol agent were extracted as several
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observations. Each different treatment was considered as a single observation leading to
the extraction of 484 individual observations.

2.4. Data Synthesis and Analysis

Most studies reported the effect of entomopathogenic microorganisms on the life table
parameters of parasitoids. In these studies, parasitoids were the dependent variable. The
impact of a treatment with entomopathogenic microorganisms was usually compared with
a “no-treatment control” (parasitoids only). Data were synthesized by “vote counting” of
the numbers of positive, neutral, and negative effects caused by the entomopathogen on
each studied parameter of the parasitoid’s fitness. We used “positive” when the microor-
ganism treatment significantly improved the development of the parasitoid in comparison
to the no-treatment control. “Negative” was used when the microorganism treatment
significantly hindered the development of the parasitoid compared to the no-treatment
control. “No effect” was used when no significant difference was found between the treat-
ment and the parasitoid-only control. In a simplified way, combinations with positive or
no effect were defined as compatible. However, in the reviewed papers, compatibility was
assessed by an overall analysis of all the studied parameters. Being unable to synthesize all
interconnected parameters for all reviewed papers, we reported compatibility based on the
authors’ conclusions. For example, if they mentioned that two biocontrol agents could be
combined at a defined timing and dosage despite observed antagonistic effects under other
conditions, we reported those as compatible.

When the effect on pest control was reported, “positive” was used to categorize
when the pest reduction achieved by the combined biocontrol agents was higher than the
reduction achieved by the strongest agent applied individually. Positive effect can be either
“synergistic” when the pest reduction achieved by the combined biocontrol agents is higher
than the addition of that achieved by each agent applied individually, “additive” when the
pest reduction achieved by the combination is equal to the addition of that achieved by each
agent used alone, or “less than additive” when the pest reduction achieved by the combined
biocontrol agents is significantly higher than that achieved by each agent used alone, yet
lower than additive. “No effect” was used when no significant difference was observed
between the pest reduction achieved by the combined agents and that achieved by the
strongest agent applied individually. “Negative” was used when the combined biocontrol
agents achieved a lower pest reduction than the strongest agent used individually.

Among the publications selected for this review, reports on laboratory combination
experiments were predominant. From those publications, we extracted life-history data
on sixteen parameters for parasitoids, four parameters for pests, and five parameters for
entomopathogenic microorganisms. For further analysis, we focused on the parasitism
rate, emergence rate, mortality, sex ratio, and longevity of parasitoids, as these were the
most documented parameters.

The packages ggplot2 [66], tidyverse [67], and webr [68] in RStudio (version 4.1.2),
as well as Microsoft Excel (version 2208), were used to obtain descriptive statistics and to
visualize data.

3. Results and Discussion
3.1. Scope of the Publications

Forty-nine studies detailing one hundred combination experiments were conducted
from 2000 to 2022. Eighty-four were laboratory experiments and thus formed the focus of
our results. In addition, nine were field experiments, five were semi-field experiments, and
two were greenhouse experiments. All combination experiments included a no-treatment
control as it was an inclusion criterion. Four experiments included additional controls
with either the parasitoid (3) or microorganism (1) alone, and fourteen included both types
of controls. Six experiments included a synthetic insecticide control in addition to the
no-treatment control.
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The reviewed studies dealt with 31 target pests. Approximately half of these were
Lepidoptera, of which 52% were Noctuidae. The remaining were Hemiptera, Diptera,
and Coleoptera (Figure 2). The studied biocontrol agents included 36 parasitoids and
17 entomopathogenic microorganisms. All parasitoids were Hymenoptera, and the most
represented families were Braconidae (44%) and Trichogrammatidae (18%) (Figure 3). Most
combination experiments were conducted with fungi (80%), followed by bacteria (11%)

and viruses (9%) (Figure 4).
¥

¢
S

Figure 2. Order and family of target pests where combined biocontrol agents were used (1 = 100
combination experiments from 49 studies).

3.2. Assessed Combinations of Biocontrol Agents in Laboratory Experiments

The conducted laboratory experiments reported entomopathogenic microorganisms’
effects on parasitoid’s life table parameters. In total, 49 combinations were tested in 84 labo-
ratory experiments. While many experiments were conducted with fungi, few analysed the
compatibility of wviral and bacterial biocontrol agents with parasitoids
(Table 1). B. bassiana was part of all the most frequent combinations with Trichogranuma
pretiosum [24,52], Tamarixia triozae [63,64], E. formosa [40,51], and Trichogramma atopovir-
ilia [24]. Metarhizium anisopliae (Metschnikoff) used with Cotesia flavipes [55,58] was the next
most assessed combination. All other combinations appeared in one to three laboratory
experiments each. Trichogramma pretiosum [24,47,52] and E. formosa [29,38,40,51] were the
most researched parasitoids, followed by A. colemani [23,30,32,35,46], C. flavipes [55,58],
and Diaeretiella rapae [18,43]. In terms of microorganisms, B. bassiana [17,18,24,26,32,33,35,
40,42,43,48,51,52,54,55,57-61,63-65] was the most studied fungus, followed by M. aniso-
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pliae [30,34,36,37,48-51,53,55,57,58] and L. muscarium [18,23,38,41,46]. Bacillus thuringiensis
var. kurstaki (Btk) [19,21,22,47,56] was the most frequently assessed bacterium. Among
viruses, the Spodopfera exigua multiple nucleopolyhedrovirus (SeMNPV) [25,39,62] and
the Spodoptera frugiperda multiple nucleopolyhedrovirus (SEIMNPV) [27,28] were the most
frequently tested in combination with parasitoids.

E. mundus
E. furuhashii

Figure 3. Family and species of hymenopteran parasitoids used in combination with an ento-
mopathogenic microorganism (1 = 100 combination experiments from 49 studies).

3.3. Reported Compatibility of Biocontrol Agents Assessed in Laboratory Experiments

Thirty-eight out of forty-nine combinations of biocontrol agents were reported as com-
patible [18-20,22,24-26,29,32,34-37,39,41,43-45,47,49,50,52-60,62-65] (Table 1). Six combi-
nations were reported as incompatible [17,27,28,42,51], often due to a lower emergence rate
caused either by bad timing, direct infection, or too high dosage. No answer about compat-
ibility was given for the five remaining ones [30,38,54,56]. Divergent results reported from
the combination of L. muscarium with A. colemani. Aqueel and Leather [23] found that these
biocontrol agents interacted negatively. In contrast, Mohammed and Hatcher [46] reported
them as compatible as long as the fungus was applied more than five days after parasitoid
release.
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Figure 4. Type and species of entomopathogenic microorganisms used in combination with a para-
sitoid (1 = 100 combination experiments from 49 studies). Bb = Beauveria bassiana; Ma = Metarhizium
anisopliae; Lm = Lecanicillium muscarium; Mb = Metarhizium brunneunt; L1 = Lecanicillium longisporum;
Pn = Pandora neoaphidis; As = Acremonium sclerotigenum; Mr = Metarhizium robertsii; Pv = Paecilomyces
variotii; Ssp. = Simplicillium sp.; Btk = Bacillus thuringiensis var. kurstaki; Bta = Bacillus thuringiensis var.
aizawai; Bti = Bt var. israelensis; Bl = Brevibacillus laterosporus; SeMNPV = Spodoptera exigua multiple
nucleopolyhedrovirus; SEIMNPV = Spodoptera frugiperda multiple nucleopolyhedrovirus; HearNPV
= Helicoverpa armigera nuclopolyhedrovirus.

The influences of combined biocontrol agents on pest mortality were analysed in ten
laboratory experiments extracted from nine studies [25,28,38,44,45,50,57,62,65]. Out of 41
observations made in these experiments, 14 reported a positive effect, with significantly
higher pest mortality when biocontrol agents were combined compared to the strongest
agent used alone. In 11 of these, the interaction was less than additive [25,28,57,65]. In two
further observations, it was additive [50], and in one, it was synergistic [50]. Twenty-six
further observations reported that the combination had no effect on pest mortality [25,38,
44,45,62], and one single study reported a negative effect [25].
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Table 1. Compatibility of 49 combinations of biocontrol agents extracted from laboratory experiments in the reviewed studies; green = combination reported as
compatible; red = combination reported as incompatible; no fill = no report of compatibility; ! = at least one paper mentioning application timing as important; 9 = at
least one paper mentioning dosage as important; FI. = Figitidae; ICHN. = Ichneumonidae; PTEROM. = Pteromalidae; TRICHOGRAMM. = Trichogrammatidae; NPV
= nucleopolyhedrovirus; MNPV = multiple nucleopolyhedrovirus (n = 84 experiments from 43 studies [17-20,22-30,32,34-39,41-47,49-60,62-65]).
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Out of 266 observations, 83 (31%) reported a negative effect of entomopathogenic
microorganisms on parasitism rate [17,24,37-39,42-46,51,52,55,60,65] (Table 2). This pa-
rameter was positively influenced in four observations (2%) [20,24,52,54]. The other
studies observed no significant differences between the treatment and control [19,20,22—
24,28,32,35,36,39,43-47,52-55,58,60,63,65]. The parasitism rate was often related to the
ability of the parasitoid to discriminate against infected hosts. Females appeared to avoid
ovipositing on treated hosts mainly when they had a choice between treated and healthy
hosts. Under no-choice conditions, females only laid fewer eggs on treated hosts than on
healthy ones in one out of seventy observations (~1%) [19,20,38,57,63]. In contrast, when
females had a choice, they avoided treated hosts for oviposition in 15 out of 35 observations
(43%) [19,20,32,37,39,44-47,54,65]. It is important to stress that sixty-three out of the seventy
observations made under no-choice conditions were extracted from a single study reporting
three experiments [63]. Therefore, further research needs to be done to confirm the above
statements. Discrimination of infected hosts would be beneficial under field conditions.
Indeed, parasitoids could complement the effects of entomopathogenic microorganisms on
the pest while avoiding the negative effects of the latter on themselves.

A reduced emergence rate of parasitoids combined with a microbial biocontrol agent
was reported in 144 of 257 observations (56%) [17-20,23-30,34,36-39,42—-46,49-60,62-65].
Entomopathogenic microorganisms had no significant influence on this parameter in
all other observations [19,20,22,24,28,29,32,35,39,41,43,46,47,52,53,55-57,60,65]. Parasitoids
combined with microbial agents had higher mortality in seventy-one out of one hundred
ninety-four observations (37%) [18,24,26-29,39,49,54-57,59,65] and lower mortality in four
further observations (2%) [55]. No significant effect was reported in the remaining ones [18,
24,26,28,39,41,47,49,53-57,63,65]. The contact with entomopathogenic microorganisms
reduced the female offspring sex ratio of parasitoids in 17 out of 92 observations (18%) [23,
24,46,52]. No significant change of this parameter was observed in all other cases [17,24,
28,32,35,41,43,46,52,53,55,57,65]. Female parasitoids combined with microbial biocontrol
agents had shorter longevity in 67 out of 130 observations (52%) [17,19,20,24,42,43,52,55—
57,64]. A single observation (1%) reported higher longevity of female Trichogramma chilonis
when fed with a mixture of honey and Btk in comparison with females fed pure honey [22].
No significant difference in female longevity was reported in all other observations [19,20,
22,24,29,34,35,42,46,50,52,53,55,56]. When combined with microbial biocontrol agents, male
parasitoids had shorter longevity in 55 out of 125 observations (44%) [17,19,24,42,52,55,64]
(Table 2). This parameter remained unchanged in all other observations [17,19,20,24,29,34,
3541,42,50,52,53,55,56].

Timing of application and dosage of biopesticides were important factors influencing
the compatibility of entomopathogenic microorganisms with parasitoids. In total, the
importance of the timing of application was emphasized in 44 out of the 84 laboratory
experiments (52%) [17,20,21,24,25,27-29,34,36,38,39,41,43,45,46,50-52,57,60,62—65] (Table 1).
The importance of dosage was highlighted in 25 out of these 84 experiments (30%) [19,20,22,
24,25,29,39,41,49,54,60,62,64,65]. For example, B. bassiana was reported as compatible with
parasitoids in 34 out of 37 experiments [17,18,24,26,32,34,35,42,43,51,52,54,55,58—60,63-65],
but the importance of 1) an adapted application timing and 2) dosage was mentioned in 25
(68%) [17,24,34,43,51,52,60,63-65] and 13 (35%) [24,54,60,64,65] of these, respectively. The
optimal dosage differed according to the target pest and the combination of biocontrol
agents used. It must be sufficient to kill the pest without negatively affecting the parasitoid.
The interval length between parasitoid release and infection also differed and needed to be
defined for each pair of biocontrol agents.
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Table 2. Effect of entomopathogenic microorganisms on the life cycle of parasitoid wasps; N = significantly negative effect; NE = no significant effect; P = significantly
positive effect (1 = 468 observations extracted from 84 experiments from 43 studies [17-20,22-30,32,34-39,41-47,49-60,62-65]).

Effect of Entomopathogenic Parasitism Rate Emergence Rate Parasitoid Mortality Female Sex Ratio Female Longevity Male Longevity
Microorganisms on D.lfferent Parameters N NE P N NE P N NE P N NE P N NE P N NE P
of Parasitoid Wasps.
= Bacillus thuringiensis var. aizawai 2 2 2
s Bacillus thuringiensis var. israelensis 2 1 1 1 2
P Bacillus thuringiensis var. kurstaki 10 2 5 3 2 2 1 2 1
2 Brevibacillus laterosporus 2 1 1 1 2
Acremonium sclerotigenum 1 1
Beauveria bassiana 53 124 2 77 50 13 97 1 5 48 50 30 45 29
Lecanicillium longisporum 9 9 36 9 9
Lecanicillium muscarium 11 7 15 13 6 12 10 1 5
Metarhizium anisopliae 8 11 13 14 5 5 3 10 11 14 8 16
B Metarhizium brunneum 6 14 1 1 1 1 1 1
g Metarhizium robertsii 1 2 1 2 2 2
= Paecilomyces variotii 1 1
Pandora neoaphidis
Simplicillium sp. 1 1
] Helicoverpa armigera NPV 3 1 1 2 1 2 3
g Spodoptera exigua MNPV -+ 2 11 g 2
S Spodoptera frugiperda MNPV 4 10 1 10 1 4
Total 82 178 4 143 110 0 70 120 < 17 75 0 66 63 1 55 70 0

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 20



Pathogens 2023, 12, 957

110f 17

In most reviewed publications, applying the entomopathogenic microorganism after
parasitism was recommended to reduce its negative effects on parasitoid development.
Waiting for 24 h after the emergence of T. pretiosum before applying B. bassiana reduced the
negative effects of the entomopathogenic fungus on the parasitoid [52]. Beauveria bassiana
and T. trizoae were assessed as compatible if applied at different times [63]. Infection rate of
this parasitoid by the fungus was significantly higher in early instars than in more advanced
developmental stages [64]. Therefore, the parasitoid should be released before applying
the fungus [17,64]. The same conclusion was obtained for B. bassiana and M. anisopliae used
in combination with T. frizoae [34]. When combined with Aphelinus abdominalis, B. bassiana
should be applied only when most parasitoids already transformed into pupae and are less
susceptible to the fungus [60].

Similarly, the first application of Lecanicillium longisporum (Petch) Zare & Gams should
be conducted one day after E. formosa enters the pupal stage to reduce competition between
the biocontrol agents [29]. Detrimental effects of B. bassiana and M. anisopliae on the
development of E. formosa could be reduced by waiting at least four days after parasitoid
release to spray the microbial agents [51]. Post-parasitism application of Metarhizium
brunneum Petch also appeared to be best suited for Hyposoter didymator as it limited negative
effects on the parasitoid due to direct contact with the fungus [45]. A spatial separation of
the microbial treatment and the parasitoid release is also possible to avoid these kinds of
effects [53]. Fewer A. colemani with a lower rate of females emerged from aphids treated
with L. muscarium within five days of parasitization. In contrast, fungal application six or
seven days after aphids had been parasitized did not significantly affect the development,
emergence rate, or sex ratio of the parasitoid [46]. Four different time intervals between
parasitism by Campoletis sonorensis and application of the SEMNPV were tested. Decreasing
parasitoid mortality was observed with increasing time interval. The virus did not affect the
survival of C. sonorensis when applied six days after parasitization [28]. In an experiment
combining Euplectrus plathypenae and the SeMNPV, the parasitoid was only able to complete
its development when the viral infection occurred at least two days after parasitization [46].

In contrast, few recommendations to apply the entomopathogenic microorganism
prior to the parasitoid release were found in the reviewed publications. Bacillus thuringiensis
var. kurstaki and the Helicoverpa armigera nucleopolyhedrovirus (HearNPV) were recom-
mended to be applied two days before releasing H. hebetor to control Helicoverpa armigera
on chickpeas [20]. Similarly, it was recommended to apply B. bassiana before releasing
Trichogramma dendrolimi so that pest eggs unaffected by the fungal treatment become para-
sitized [65].

Here, we show for the first time that most studied combinations of biocontrol agents
are compatible under controlled conditions. In the best cases, parasitoids are outside
the field of action of entomopathogenic microorganisms and remain unaffected when
combined with the latter. If not, the timing of application of the biocontrol agents and the
biopesticide dose must be carefully determined. Mathematical models such as the one
created by Gonthier et al. [69] for the combined use of Necremnus tutae and Phthorimaea
operculella granulovirus against Tufa absoluta can be helpful tools for this purpose. If
the dose required to control a specific pest is higher than that tolerated by the parasitoid,
the compatibility of the two biocontrol agents is compromised. In terms of pest control,
combined biocontrol agents had a positive influence in most cases compared with each
agent used alone. However, in their narrative review, Roy and Pell [10] highlighted the
importance of conducting field experiments in addition to laboratory bioassays to assess
the physiological and ecological susceptibility of natural enemies in a realistic environment.
In the field, unpredictable climatic conditions could modify the dynamics of the biocontrol
agents observed in the laboratory. Furthermore, less precise application of biopesticides
and broader spatial dispersion of pests and parasitoids could significantly influence the
compatibility and efficacy of the combinations of biocontrol agents. The presence of other
insect species could also influence the level of pest control achieved by parasitoids and
entomopathogenic microorganisms that have a wide host range.
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3.4. Parasitoid Life History and Susceptibility to Entomopathogens

Parasitoid life history (e.g., generation time, population structure) can influence their
susceptibility to entomopathogens [70,71]. As many entomopathogens target the larval
stage of the pest, egg parasitoids are less likely to be in contact or compete with ento-
mopathogens, making them de facto more compatible. The development strategies of
larval parasitoids can strongly influence their susceptibility to entomopathogens. Endopar-
asitoids, which lay their eggs inside the host insect’s body, may be less exposed than
ectoparasitoids, which lay their eggs on the surface of the host, sometimes in open envi-
ronments where the microorganisms can directly reach the parasitoid larvae [72]. On the
other hand, endoparasitoids typically have a longer development time than ectoparasitoids,
which can also influence their susceptibility to entomopathogens. As entomopathogens
have a slower mode of action, taking longer to kill the host insect, parasitoids with shorter
life cycles may emerge from the host before the entomopathogen has a chance to kill it,
reducing their exposure to the pathogen [72].

In fact, endoparasitoids are generally considered to be more susceptible to ento-
mopathogens than ectoparasitoids [73], as the pathogen has more time to act on the im-
mature parasitoid during its extended development period inside the host insect [74].
Additionally, endoparasitoids are more likely to be exposed to entomopathogens that are
ingested by the host insect, as the pathogen can spread throughout the host’s body and
affect the parasitoid’s physiological function [75].

3.5. Investigated Combinations and Reported Compatibility of Biocontrol Agents in Field,
Semi-Field and Greenhouse Experiments

Nine field, five semi-field, and two greenhouse experiments reported the effects of
fifteen combinations of parasitoids and entomopathogenic microorganisms on pest control.
Thirteen experiments included fungi, one included a bacterium, and the two remaining
ones were conducted with viruses [21,31,33,39,40,46,48,61]. As in the laboratory exper-
iments, B. bassiana was the most studied microorganism. It was tested in combination
with E. formosa [65], Chelonus bifoveolatus, Coccygidium luteum and Cotesia sp. [48], Anisopter-
malus calandrae and Lariophagus distinguendus [33], and Macroglenes penetrans [61] in one
experiment, each. In their greenhouse experiment, Labbé et al. [40] found that B. bassiana
used in addition to E. formosa resulted in a higher pest reduction than the parasitoid alone
without harming the development of the latter. In contrast, the fungus was reported as
incompatible with A. calandrae and L. distinguendus [33]. Indeed, in semi-field experiments,
B. bassiana affected both parasitoids negatively, resulting in lower pest control of the fungus-
parasitoid combinations compared with the parasitoid released alone. No answer about
the compatibility of this fungus with the other parasitoids mentioned above was given.

In the field experiments conducted by Ngangambe and Mwatawala [48], M. anisopliae
was tested in combination with C. bifoveolatus, C. luteum, and Cotesia sp., also in one experi-
ment each. In this study, biopesticides based on B. bassiana and M. anisopline were reported
as less harmful to natural parasitoids than synthetic insecticides based on flubendamide.
Fuentes-Contreras and Niemeyer [31] assessed Pandora neoaphidis and Aphidius rhopalosiphi
as compatible in two semi-field experiments. Combining these biocontrol agents resulted in
more efficient pest control than each agent used alone. It significantly reduced the growth
rate of the pest population. In a greenhouse experiment, the SeMNPV and Microplitis
pallidipes were found to be compatible [39]. The parasitoid vectored the virus, and their
combined use resulted in a significantly higher pest control. Thus, it was recommended to
expose the parasitoid to the virus before releasing it.

H. hebetor was tested in combination with Btk and the HearNPV in one field experiment
each [21]. These combinations were reported as compatible. Both parasitoid—microbe
combinations significantly reduced pest density and crop damage in comparison with each
biocontrol agent alone. Crop yield was significantly increased, but so were the control costs.
Yield gain was insulfficient to cover the additional treatment costs, meaning that combining
the biocontrol agents negatively affected the crop’s profitability. The remaining investigated
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combinations were L. muscarium with A. colemani in a semi-field experiment [46] and
the SeMNPV with M. pallidipes in a greenhouse experiment [39]. Both were reported as
compatible and significantly reduced pest density when deployed together.

Here, we show that combining entomopathogenic microorganisms with parasitoids
in the field appears beneficial for pest control; however, profitability may be reduced due
to increased control costs. However, the interaction of biocontrol agents on key aspects,
namely crop damage, crop yield, and treatment costs, were assessed in only two out of the
hundred reviewed experiments. These agronomic and financial parameters must be con-
sidered in future research assessing the compatibility of parasitoids and entomopathogenic
microorganisms.

4. Conclusions

Environmental pollution, loss of biodiversity, pest resistances, and risks to human
health are among the controversial effects of synthetic pesticides. Alternative methods
for pest control are sought after. Combining biocontrol agents can improve pest control
and reduce harmful effects on the environment. In this systematic review, we show for
the first time that many combinations of parasitoids and entomopathogenic microorgan-
isms are compatible and can be deployed together. Eighty percent of the biocontrol agent
combinations included in the reviewed papers were deemed compatible. Combinations,
including parasitoids and fungi, were well represented in the literature. In contrast, few
experiments were found combining bacteria with parasitoids, despite the large number
of Bt-biopesticides. Further research on combining bacterial or viral biopesticides with
parasitoids is required. The most studied microorganisms of each category, i.e., B. bassiana
and M. anisopliae for fungi, Btk for bacteria, as well as the SeMNPV and the SfMNPV for
viruses, were found compatible with many different parasitoids. However, most of the
studies were conducted in the laboratory, and new experiments under field conditions are
necessary to include agronomic and financial parameters in the final compatibility assess-
ment. Moreover, most of the reviewed studies focused on the impacts of entomopathogenic
microorganisms on parasitoids. Few examined the effects of parasitoids on the develop-
ment and dissemination of microbial biocontrol agents. Further research is required to
analyse how both types of biocontrol agents influence each other in the field. Such an
assessment should be conducted on more than one generation of parasitoids to highlight
possible long-term effects. Appropriate timing of application and dosage must be defined
individually for each combination of biocontrol agents against each specific pest, as these
are key success factors. Combining biocontrol agents has the potential for pest control,
yet interactions between parasitoids and entomopathogenic microorganisms should be
further researched. To develop innovative methods, interdisciplinary work should be
fostered. Finally, pest biocontrol methods must be viable. Therefore, the availability and
the production costs of biocontrol agents should be assessed and further improved.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/pathogens12070957 /s1, Figure S1: PRISMA flow diagram of
studies looking at combinations of biocontrol agents.
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3 Semi-field experiment: “A parasitoid wasp allied with an ento-
mopathogenic virus to control Tuta absoluta”

The following manuscript was submitted on 28% June 2023 for consideration as a research article in the
special issue “Entomopathogens: from laboratory to the field” in Crop Protection. This journal focuses
on the development and description of control strategies and their integration into practical pest man-
agement programs worldwide. In this manuscript, results of a semi-field experiment carried out on the
site of Agroscope in Conthey (Valais, Switzerland) from June to August 2021 are reported. The aims of
the study were: 1) to evaluate the control efficacy of the parasitoid wasp Necremnus tutae and the
Phthorimaea operculella granulovirus when used alone and in combination against Tuta absoluta; 2) to
assess the compatibility of the two biocontrol agents under semi-field conditions over an entire growth
period. Authors guidelines can be found in Annex 3, original data in Annex 4 and statistical analyses in
Annex 5.
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Highlights

e Necremnus tutae and PhopGV are compatible biocontrol agents.
e Both agents, used alone or combined, showed potential against 7uta absoluta.
e Release intensity of parasitoids is a critical factor for effective control.

e Repetitive viral applications are necessary to restrain population growth.

Abstract

Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a major threat to worldwide tomato production,
and sustainable management methods are needed. Phthorimaea operculella granulovirus (PhopGV) and
the parasitoid wasp Necremnus tutae Ribes & Bernardo (Hymenoptera: Eulophidae) were identified as
promising biocontrol agents of this pest. Since the virus is most effective against first instar larvae,
whereas the parasitoid targets older ones, combining both agents could result in increased pest control.
We conducted a replicated semi-field experiment to evaluate the control efficacy of N. tutae and
PhopGV when used alone and in combination against 7. absoluta and their compatibility over an entire
growth period. Combining the two agents achieved the highest larval (-24%) and crop damage (-29%)
reduction cumulated over the entire experiment. However, there was no significant additive effect of the

two agents. At the end of the trial, which coincided with the emergence of the third generation of
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1. absoluta adults, using the virus alone resulted in the strongest reduction of adult density (-78%),
followed by the virus-parasitoid combination (-59%). No negative effect of the virus was recorded on
the parasitoid population. Our results demonstrate the compatibility and potential of N. tutae and
PhopGV to reduce population growth and crop damage of 7. absoluta under semi-field conditions.
While more research is needed, our findings provide important insights into an innovative combination

of biocontrol agents, thereby contributing to more sustainable agriculture.

Keywords

Baculovirus, combination, tomato leafminer, integrated pest management, biological control,

Phthorimaea absoluta

1 Introduction

About 190 million tons of tomatoes (Solanum lycopersicum L.) are produced yearly on five million
hectares worldwide (Food and Agriculture Organization of the United Nations, 2023). The South
American tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is a major threat to this
essential cash crop, relied on by many people (Bergougnoux, 2014). The pest can cause up to 100%
damage in all tomato production systems, ranging from soil grown open-field crops to high-tech
greenhouse crops (Biondi et al., 2018; Desneux et al., 2011; Desneux et al., 2010). Tuta absoluta is
native to South America and has, since its arrival in Spain in 2006, spread to nearly 100 countries outside
its endemic region (European and Mediterranean Plant Protection Organization, 2023). Females lay their
eggs individually on leaves, stems, and petioles, preferentially on apical and median plant parts (Cocco
etal., 2015b; Torres et al., 2001). The leaf-mining larvae penetrate the leaves and feed on the mesophyll
throughout their four-instar development. Larvae mainly damage leaves and attack fruits when the
population density is high (Cocco et al., 2015b; Desneux et al., 2010). Mature larvae usually drop to the
soil and pupate on the ground. 7. absoluta has a high reproduction potential and can complete up to 12
generations per year under favourable environmental conditions (Desneux et al., 2022; Desneux et al.,

2010).
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Pest control with synthetic insecticides, largely used to control 7. absoluta (Desneux et al., 2022;
Desneux et al., 2010), is unsustainable as the moth rapidly develops high levels of resistance to many
chemical compounds (Guedes et al., 2019). Moreover, synthetic insecticides harm key beneficial
arthropods, disrupt existing integrated pest management (IPM) programmes and cause environmental
and human health concerns (Abbes et al., 2015; Soares et al., 2019; Yadav and Devi, 2017). Therefore,
alternative sustainable management methods to control 7. absoluta are required to ensure the economic
viability of tomato production in the invaded regions. Biological control methods involving egg
parasitoids, mirid predators, and microbial agents have been integrated into pest management
programmes with variable success against 7. absoluta in various regions, such as South America,
Europe, Africa, and Asia (Desneux et al., 2022). Using multiple pest control methods, including diverse
biological control agents, provides numerous advantages compared to relying solely on one single agent.
One benefit is the possibility of enhancing effectiveness, as different control methods have advantages
and disadvantages, and combining them can help overcome each method's limitations. For instance,
combining various natural enemies may be more effective at controlling a pest population as each
species can have distinct foraging behavior or target different pest life stages (Dainese et al., 2017).
Regarding T. absoluta, most studies on combining different biological control agents focused on
combining Trichogramma egg parasitoids with other methods (Bueno et al., 2023; Chailleux et al., 2013;

Mansour and Biondi, 2021), and the ones testing the efficacy under semi-field conditions are scarce.

Phthorimaea operculella granulovirus (PhopGV, Baculoviridae: Betabaculovirus) is a granule-shaped
virus highly specific to Lepidoptera and infectious to larvae of different Gelechiidae. It was first
developed for the biocontrol of the potato moths Phthorimaea operculella (Zeller) and Tecia solanivora
(Povolny), which are closely related to 7. absoluta (Gémez Valderrama et al., 2018; Mascarin et al.,
2010). Infection and replication of baculoviruses occur exclusively in the larval stage. Larvae become
infected when they feed on plants contaminated with occlusion bodies (OBs) containing occlusion-
derived viruses (ODVs). After ingestion, OBs are dissolved in the insect midgut, releasing ODVs that
infect the midgut epithelial cells. Budded viruses (BVs) then disperse and replicate in other susceptible
tissues. The larval tegument ruptures upon death, releasing new OBs that contaminate the plant surface

(Slack and Arif, 2007; Williams et al., 2017). The PhopGV has a good level of pathogenicity against the
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first instars of 7. absoluta larvae and also causes sublethal effects such as retarded larval growth and

pupation failure in the older larval instars (Gomez Valderrama et al., 2018; Mascarin et al., 2010).

Necremnus tutae Ribes & Bernardo (Hymenoptera: Eulophidae), previously classified as Necremnus
artynes (Walker), is native to the Mediterranean region and is the most abundant and widespread larval
parasitoid of 7. absoluta in that area (Desneux et al., 2022; Ferracini et al., 2019). This synovigenic
idiobiont ectoparasitoid parasitizes and feeds on second to fourth instar larvae of the pest with a distinct
preference for the third instar (Calvo et al., 2013). N. tutae causes additional mortality by host-killing (i.
e. host-feeding, host-stinging). It is currently not commercially available but occurs spontaneously in
tomato production fields in different regions (Abbes et al., 2014; Arné et al., 2021; Crisol-Martinez and

van der Blom, 2019; Desneux et al., 2022).

Augmentative releases of V. tfutae alone seem insufficient to keep damage caused by 7. absoluta on
tomato plants below the economic threshold (Calvo et al., 2016; Cocco et al., 2015a; Desneux et al.,
2022). Regarding PhopGV, high doses (weekly application of the highest recommended concentration)
are required to lethally infect 7. absoluta larvae. In addition, the most damaging older larvae are difficult
to reach due to their location inside the mines, so complementary control measures are required
(Gonthier et al., 2023a). Combining both biocontrol agents could increase pest control against
T. absoluta. The virus is more effective on young larvae, while the parasitoid targets the later instars. In
addition, no adverse effects of PhopGV were detected on the development of N. tutae under controlled

conditions, indicating that both agents are compatible for combined use (Gonthier et al., 2023a).

We conducted a replicated semi-field experiment to assess the efficacy of N. tutae, and PhopGV used
alone and in combination for the biocontrol of 7. absoluta. More precisely, we addressed the following
research questions: Q1 Do M. tutae and PhopGV influence the population development of T. absoluta
when used alone or in combination? Q2 Do N. tutae and PhopGV influence the level of crop damage
caused by 7. absoluta when used alone or in combination? Q3 Is the N. futae population influenced by

PhopGV under semi-field conditions (effects on population size and sex ratio)?
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2 Material and methods

2.1 Study area and greenhouse

The replicated semi-field experiment was conducted from June to August 2021 in the facilities of
Agroscope in Conthey (Valais, Switzerland). Twenty-eight walk-in cages (Diatex SAS, France) of
2.6 m? surface area and 2.5 m height with thrips-proof mesh (300 x 300 pm?®) were set up in two identical
90 m” glass greenhouses. The floor below the cages was covered with a white woven ground cloth

(100 g/m?). Temperature, relative humidity, and irrigation were managed using a remote-control system.
2.2 Biological material

2.2.1 Tomato plants

Ungrafted single-stemmed tomato plantlets cv. Admiro (De Ruiter) 30 ¢cm in height and with five fully
expanded leaves with leaflets were repotted in 10-litre pots, fertilized with Osmocote (NPK 15/9/12), a
slow release fertilizer providing enough nutrients for four months, and moved into the walk-in cages.
No plant protection interventions, other than those detailed in 2.2.2 and 2.2.3, were realised. The average
temperature during the experiment was 25°C (max. 41°C, min. 17°C). Four plants were placed in each
of the 2.6 m? walk-in cages. The main stem of each plant was trellised on a string attached to a wire
above the cage and passed through an insect-proof hole in the ceiling of the latter. Secondary shoots

were removed weekly, and plants were watered daily through drip irrigation.

2.2.2 Insects

Pupae of T. absoluta were provided by Andermatt Biocontrol Switzerland. These were originally
collected in Switzerland and reared in the company's facilities, and a sample was checked to ensure a

1:1 sex ratio.

N. tutae parasitoids were collected from commercial tomato fields in EIl Maresme county, Barcelona,
Spain, and a colony was established at Agroscope, Switzerland. Adult parasitoids were kept in cages
(50 x 50 x 50 cm) (bug dorm; MegaView Science Co. Ltd., Taiwan) and provided with honey-water
(10% v/v) soaked cotton and tomato plants with 7. absoluta larvae in their second or third instar for

parasitization. After emerging, adult parasitoids were gathered and kept at 12 °C with honey and water.
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Every ten days, a new generation of parasitoids was started. Only naive, mated (stored with males for at
least two days), and less than one-week-old female parasitoids were used in the experiments. Adult
parasitoids were briefly cooled in a cold room (4 °C) for counting (sex ratio 1:1). They were then placed
in a box for 24 h to feed and mate before being released in the middle of each walk-in cage. Honey was

supplied twice a week for one month to the parasitoids to ensure their proper establishment.

2.2.3 Baculovirus

Tutavir®, a biopesticide containing a 2 x 10" OB/l of PhopGV, was produced and provided by
Andermatt Biocontrol Switzerland. The product was applied with an electrical backpack sprayer (Fox
Motori, Cod. 5-19-180) following the supplier's instructions specific to the trial (see 2.3 Experimental
setup). A Teejet noozle (TXA8001vk) was used and pressure was set at 2.5 bar. Good coverage of the
underside of the leaves was achieved by using a sprayer with the nozzle pointing upwards. A plastic

sheeting was hung between the cages before each application of PhopGV to avoid cross-contamination.

2.3 Experimental setup

The four following treatments were compared in a completely randomized block design with seven
replicates: 1) Control with 7. absoluta only (CO), 2) T. absoluta and N. tutae (PA), 3) T. absoluta and
PhopGV (VI), and 4) T. absoluta, N. tutae and PhopGV (VP). To provide T. absoluta with food at
libitum, four batches of plants were transplanted in the walk-in cage throughout the trial. A first set of
four potted plants was inserted on day one, followed by a second batch on day 45 (Table 1). Ten plants
cut in a neighbouring greenhouse were placed in each cage on day 48, and two potted plants were added
on day 58. All batches of plants were sprayed with water (CO and PA) or with PhopGV (VI and VP) at
standard dosage (0.015%, >3 x 10° OB/I) on the day of their introduction (Table 1Figure 1).
Additionally, the first batch of plants was sprayed at a standard dosage on days 3 and 10 and at a low
dosage (0.0015 %:; > 3 x 10® OB/I) on days 28 and 42. Fifty 7. absoluta pupae were released in each of
the 28 plots on day one. N. futae neither parasitizes nor feeds on first instar 7. absoluta larvae (Calvo et
al., 2013). Thus, the parasitoid was first released on day 16. coinciding with the first availability of the
second instar T. absoluta larvae (Table 1). At least two studies have conducted semi-field experiments

with 7. absoluta and N. tutae previously (Calvo et al., 2016; Chailleux et al., 2014; De Campos et al.,
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2020). We chose a similar setup to the one described by Calvo et al. (2016) since they used similar
cages. Thirty couples of adult N. tutae were released in each plot of treatments PA and VP. A second

release of thirty couples was done on day 41.

Table 1. Experimental setup of the semi-field experiment. Numbers in the cells below indicate the exact day each
action occurred (1 = start of the trial, release of Tuta absoluta). *° = 50 T. absoluta pupae, 3*° = 30 couples of
Necremnus tutae, ' = application of Phthorimaea operculella granulovirus (PhopGV) at standard dosage (0.015%,
>3 x 10° OB/l), - = application of PhopGV at low dosage (0.0015 %; > 3 = 10% OB/1).

Descrintion Week Number Year 2021
P 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 32 | 33 | 34
Tomato plants 1 45 | 48 | 58
T. absoluta release | 1°°
PhopGV " H L 42" H H
application g | 10 28 q5n | 487 | S8
N. tutae release 16* 413
Pest monitoring 16 | 23 | 30 | 37 | 44 | 51 58 65
Yellow sticky traps 62 to 79

2.4 Monitoring

One plant per cage was sampled weekly, starting two weeks after 7. absoluta release (Table 1). Each
week, a different plant was sampled. Two leaflets of leaves 6, 8, 10, 12, and 14 (apex =1) were collected
systematically on each selected plant, resulting in a sample of ten leaflets per cage. The number of
healthy T. absoluta larvae in each leaflet was counted using a binocular. After counting, leaflets were
placed in a transparent sheet and scanned using a standard printer, and the percentage of surface mined
by the larvae of T. absoluta was assessed using the software Imagel (Version 1.53j). Total area of
leaflets and the damaged area in pixels were measured using different hues, saturation, and brightness
of the red threshold colour in the HSB colour space. The percentage of crop damage was calculated by
dividing the damaged area by the total area of the leaflets and multiplying the result by 100. Leaflets
were put back in their original cage at the latest 36 h after sampling to avoid bias due to the removal of

insect individuals.
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From day 62 to day 79, batches of two yellow sticky traps (25 x 40 cm?) (yellow catch-it, Andermatt
Biocontrol Switzerland) with a synthetic 7. absoluta female pheromone dispenser (pheromone dispenser
for Delta-trap, Andermatt Biocontrol Switzerland) were hung in each cage to catch all alive adults of
T. absoluta and N. tutae. Once removed from the cages, the traps were wrapped in plastic film, scanned
on both sides, and placed in the refrigerator. All scans were sent to Trapview B. V. in the Netherlands,
where the numbers of adult 7. absoluta on the sticky traps were counted with a faster Renn Object
Detection Network using the Tensorflow Object Detection API. In addition, the numbers of N. tutae

males and females were counted visually using a binocular.

2.5 Statistical analysis

Statistical analyses of the dataset (Koller et al., 2023a) were performed with R 4.2.3 (R Core Team,
2023). First, the blocking factor (spatial distribution of cage in the greenhouse) was tested as a fixed
effect for all response values, and as there was no significant effect, it was excluded in the further
modelling process. To assess whether the biocontrol agents influenced the population development of
T. absoluta (Q1), two linear models with treatment as a fixed factor and cumulative larvae and adults as
response variables, respectively, were fitted using the nlme package (version 3.1-162). To assess
whether the biocontrol agents influenced the level of crop damage caused by 7. absoluta (Q2), the
average percentage of crop damage recorded over the trial was fitted as a response value in a linear
model with treatment as a fixed effect. To assess whether PhopGV influenced the N. tutae population
(Q3), the total number of parasitoid adults caught on the yellow traps at the end of the trial were sqrt(x)
transformed to normalize distribution before fitting a linear model with treatment as the explanatory
variable. To detect potential effects of the virus on the sex ratio of the parasitoid, a generalized linear

model with binomial error structure and treatment as a fixed factor was fitted.

Linear models were analysed using two-way ANOVA. To find significant differences between treatment
levels, we compared them pairwise using Tukey's HSD test in linear models that were globally
significant. Inference from the generalized linear model of parasitoid sex ratio was drawn using a chi-

square test. P values lower than 0.05 were considered statistically significant. For all models,
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assumptions were checked according to the graphical validation procedures recommended by Zuur et

al. (2009).

3 Results

T. absoluta completed almost three generations during the semi-field experiment (Figure 1). The first
generation lasted from day 1 to day 30, while the second spanned from day 30 to day 60. The third
generation started around day 60. The start and end of each generation were determined based on the

larval peak populations.

co PA Vi VP

100

600
TS 75
© Q
© [e]
$ 400 S
- &
5 % 3
7] Q
0 o
E 200 <
z 25 =
0 0

0 20 40 60 0O 20 40 60 0O 20 40 60 O 20 40 60
Day of trial [d]
Figure 1. Population dynamic of healthy Tuta absoluta larvae and crop damage (percentage of leaf area mined by
the larvae) monitored on tomato plants over a three-month semi-field experiment comparing different experimental
treatments (CO = control without treatment (only Tuta absoluta), PA = parasitoid (Necremnus tutae), V1 = virus

(PhopGYV), VP = virus + parasitoid). The solid line represents the number of larvae and is connected to the y-axis
on the left. The dotted line represents the percentage of crop damage and is connected to the y-axis on the right.

3.1 Effect of the biocontrol agents on the population growth of 7. absoluta

PhopGV and M. tutae reduced the number of 7. absoluta larvae cumulated over the trial by 13% and
14%, respectively. compared to the control (Figure 2). Both biocontrol agents applied together
decreased the number of larvae by 24%. However, the differences between the four treatments were

non-significant (ANOVA, F; = 1.508, p=0.238).

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 39



225

226

227

228

229

230

231

232

233

234

235
236
237
238
239
240
241

242

243

244

245

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Regarding the number of adult 7. absoluta caught on the sticky yellow traps at the end of the trial, the
treatment with the lowest adult density was the virus treatment, followed by the virus-parasitoid
combination (Figure 2). PhopGV alone significantly reduced the third generation of adults by 78%
compared to the control and the parasitoid treatment, respectively (ANOVA, F3 = 9.545, p = <0.001;
Tukey's test: VI-CO p=0.001, VI-PA p = 0.002). Similarly, the virus-parasitoid combination caused a
reduction of 59% and 58% of adults compared to the control and the parasitoid treatment, respectively
(VP-CO p=10.018, VP-PA p=0.022). With a reduction of 2% only, the parasitoid treatment was similar
to the control (PA-CO p = 0.999). No significant difference was found between PhopGV used alone and

in combination (VI-VP p=0.713).
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Figure 2. Cumulated number of healthy Tura absoluta larvae (left), total number of adult 7. absoluta (middle),
and average percentage of crop damage (leaf area mined by the larvae) (right) monitored over a three-month semi-
field experiment comparing different experimental treatments (CO = control without treatment, PA = parasitoid
(Necremnus tutae), V1 = virus (PhopGV), VP = virus + parasitoid). Larvae and crop damage were monitored
weekly on tomato plants, and third-generation adults were caught on sticky yellow traps at the end of the trial.
Error bars represent the standard error. Different lowercase letters indicate significant differences between the
experimental treatments according to Tukey's HSD.

3.2 Effect of the biocontrol agents on crop damage caused by T. absoluta

PhopGV and N. tutae, both alone and combined, caused a significant and similar damage reduction

cumulated over the trial (ANOVA, F3 = 8.524, p < 0.001; Tukey's test: PA-CO p = 0.003, VI-CO p =
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0.005, VP-CO p <0.001, Figure 2). PhopGV and N. tutae reduced crop damage by 24% and 25%
compared to the control. The combined biocontrol agents reduced crop damage by 29%. No significant

differences were found between the biocontrol agents used alone or in combination (all P values

>0.855).

3.3 Compatibility of the biocontrol agents under semi-field conditions

N. tutae and PhopGV were found to be compatible under semi-field conditions. Similar numbers of
parasitoids were recorded at the end of the trial in the parasitoid and the virus-parasitoid treatments
(ANOVA, F1=0.229 p=0.641). Similar sex ratios were found in both treatments, indicating no adverse

effect of PhopGV on N. tutae (Chi-square, LRT; = 0.020, p = 0.888).
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Figure 3. Necremnus tutae adults (left) and mean percentage of N. tutae females (right) recorded on sticky yellow
traps at the end of a three-month semi-field experiment including different experimental treatments (CO = control
without treatment, PA = parasitoid (N tutae), V1 = virus (PhopGV), VP = virus + parasitoid). Error bars represent

the standard error. Different lowercase letters indicate significant differences between the experimental treatments
according to Tukey's HSD (adults) and chi-square test (sex ratio).

4 Discussion

This research demonstrates the potential of the baculovirus PhopGV and the parasitoid N. futae when
used alone and combined against 7. absoluta under semi-field conditions in the greenhouse. Both the
virus and the parasitoid have previously displayed potential against this pest when used separately in
laboratory and semi-field experiments (Ben Tiba et al., 2019; Calvo et al., 2016; De Campos et al.,
2020). We found that using both agents in combination resulted in the lowest numbers of pest larvae

and the least crop damage cumulated over the entire experiment, yet the additive reduction compared to
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the use of each agent alone was statistically non-significant. The virus-only treatment, followed by the
combined biocontrol agents, resulted in the strongest reduction of adult density recorded on the yellow

traps at the end of the experiment (corresponding to the third generation of 7. absoluta adults).

Both biocontrol agents, alone and combined, significantly reduced crop damage compared to the control.
Larval density in the presence of N. tutae displayed a cumulative reduction of 14% compared to the
control, yet this effect was not significant. It must be noted that the number of larvae recorded in the
control on day 44, at the larval peak of the second generation, may have been unrepresentative of the
number of larvae present in the cages (Figure 1). The percentage of crop damage measured that day
was nearly 100%, and the larvae may have already left the leaflets sampled during the monitoring to
seek food elsewhere in the cages. In addition, larval numbers displayed high variance within treatments.
According to Cocco et al. (2015b), counting mines on the median proportion of the tomato canopy is
best suited to provide reliable estimates of the total infestation. We monitored specifically this part of
the plant; however, it is possible that high levels of infestation may have caused an altered distribution

of larvae on the plant and thus masked differences that would be visible otherwise.

Two similar semi-field studies using the same parasitoid found a significant reduction in larval density
by the end of the experiment (Calvo et al., 2016; De Campos et al., 2020). As in these studies, we used
a parasitoid-pest ratio of 1.2 but applied a different release sequence. Calvo et al. (2016) progressively
released 48 adult T° absoluta per week over three consecutive weeks and 24 adult V. tutae per week over
seven consecutive weeks starting two weeks after the first pest release. Campos et al. (2020) made two
releases, each of 40 adult 7. absoluta, with two weeks between releases. This was followed two weeks
later by a release of 50 adult V. tutae. We released 50 adult 7. absoluta on the first day, 30 adult V. rutae
on day 16 and, again 30 adult V. futae on day 41 (Table 1). According to Bodino et al. (2019), a single
N. tutae individual is able to attack a maximum of 10 host larvae per day. Given the high adult density
of the pest recorded in the parasitoid-only treatment at the end of the trial, it appears that N. futae was
outnumbered and, therefore, unable to keep 7. absoluta under control. Releasing a sufficient number of
parasitoids is crucial at the beginning of the pest infestation. Moreover, progressive and frequent
parasitoid releases are recommended to ensure good establishment of N. futae in a more realistic setup

with continuous pest infestation.
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While PhopGV doubled the natural mortality of 7. absoluta larvae in the laboratory (Gonthier et al.,
2023a), no significant effect of the baculovirus on pest larval density was visible during the eight weeks
of the semi-field experiment. Weekly application of the high dose (0.015%, >3 x 10° OB/I) is usually
recommended for controlling 7. absoluta (Andermatt Biocontrol, personal communication). In this trial,
we assessed the efficacy of PhopGV sprayed at high and low doses (0.0015%) to unveil the potential
long-term effects of the virus. Even at low doses, baculoviruses can have a long-term impact on the
population, possibly via covert infection (Burden et al., 2003) or sublethal infection, such as reduced
feeding activity (Larem et al., 2019). The effect might be visible only later in the pest population or plant
damage reduction. Following this, we found a strong reduction in crop damage in the virus treatments.
Sublethally affected larvae might have produced fewer and smaller mines than healthy ones. Adult
T. absoluta caught on the yellow sticky traps at the end of the trial represented the third pest generation.
Larvae of this generation developed on plants sprayed with the high dosage of PhopGV on days 45, 48,
and 58, respectively (Table 1). Adult density was significantly reduced by 78% and 59% in the virus-
only and virus-parasitoid treatments, respectively, highlighting the virus's potency when sprayed

repetitively at high doses.

Our semi-field trial showed that combining both agents tended to result in the strongest pest and damage
reduction cumulated over the entire experiment; however, compared to using both agents alone, the
effect was insufficient to be significant. PhopGV showed its full potential in the third generation of pest
adults after plants were sprayed at the recommended high dose. The discrepancy between the larval
population of the third generation and the adult population emerging from it indicates a high rate of
pupation failure in the third pest generation since no effect of the virus was recorded on larval density
over the experiment. So far, few studies have addressed the combination of entomopathogenic viruses
with parasitoids beyond the laboratory scale. In a greenhouse trial, damage to tomato plants by
Lacanobia oleracea (Lepidoptera: Noctuidae) was reduced by the Lacanobia oleracea baculovirus
(LoGV) and the parasitoid Meteorus gyrator (Hymenoptera: Braconidae). Similar to our study,
combining the two agents further reduced damage, but the difference was not significant (Matthews et
al., 2004). When Spodoptera exigua nucleopolyhedrovirus (SeNPV) and Microplitis pallidipes

(Hymenoptera: Braconidae) were used on cabbage grown in commercial greenhouses, the reduction in
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the Spodoptera exigua (Lepidoptera: Noctuidae) population was greater when using M. pallidipes-
carrying SeNPV than with parasitoids without virus (Jiang et al., 2011). In this case, the parasitoid could

transmit the virus, for example, when emerging from an infected host.

Timing and sequence are crucial parameters for successfully combining entomopathogens with
parasitoids (Koller et al., 2023b). Parasitization after virus application was detrimental for Euplectrus
plathypenae (Hymenoptera: Eulophidae), whereas infesting S. exigua with Spodoptera exigua multiple
nucleopolyhedrovirus (SeMNPV) two days post parasitism had no significant effects on the parasitoid
(Stoianova et al., 2012). Likewise, Campoletis sonorensis (Hymenoptera: Ichneumonidae) survival
increased with a greater delay between parasitism and the infection with the Spodoptera frugiperda
multiple-enveloped nucleopolyhedrovirus (STMNPV) of the host (Escribano et al., 2000). Since the
PhopGV becomes less effective with the increasing age of 7. absoluta larvae (Larem et al., 2019) and
N. tutae targets older larvae (Chailleux et al., 2014), both agents would best complement each other for
pest control when the virus is applied several days before the parasitoid. Previous research has shown
that prior parasitism can reduce the pathogenicity of baculoviruses in hosts (Abbes et al., 2014;
Cossentine, 2009). We are unsure whether this played a role in the limited positive effect of the
combination in our study, and further investigation is needed to explore this aspect of the interaction.
However, since the number and sex ratio of parasitoids found in the PhopGV-treated plots was similar
to that in the plots without the virus at the end of the trial, we can confirm that infection with PhopGV
after parasitization has no negative impact on the population of N. tutae (Gonthier et al., 2023a).
Consequently, PhopGV should also be compatible with naturally occurring populations of N. tutae,
which is a significant advantage for its use in conservation biocontrol due to the wide distribution of this

parasitoid.

The semi-field setup of our study allowed for precise application, dosage, and release timing. Yet such
a controlled environment cannot perfectly represent field conditions. Factors such as temperature, low
aeration, and lack of shading screens can significantly impact plant growth and the biological cycle of
the pest and the parasitoid. Additionally, environmental factors such as UV radiation, heat, and
desiccation may increase the degradation of PhopGV, and inferior leaf coverage due to spraying larger

surfaces may reduce the effectiveness of the virus, further affecting the interaction outcome. The
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infestation was set artificially high in our experiment and conducted in a single day. Such a high pest
density may have led to an underestimation of the efficacy of N. futae and PhopGV. Real-world
populations of T. absoluta are more complex, with individuals immigrating and emigrating, aggregated
spatial distribution, and multiple developmental stages present simultaneously (Cocco et al., 2015b).
Under those conditions, where precise control may be challenging, combining the two biocontrol agents
can offer greater flexibility in the timing and dosage of application. Predictive models show that
biocontrol intervention timing and intensity are crucial for success and cost efficiency (Gonthier et al.,
2023b). Further research should be conducted to better understand the effectiveness of biocontrol agent
combinations in real-world settings and determine whether and how parasitoids can assist in spreading

or accelerating the spread of the virus within the pest population (Jiang et al., 2011).

The difficulties linked with the mass rearing of N. futae may challenge the widespread implementation
of this strategy (Desneux et al., 2022). Combining PhopGV with the larval parasitoid
Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), which is also compatible with
PhopGYV (Gonthier et al., 2023a), could be an interesting alternative. The parasitoid has the potential to
reach an 86 % parasitism rate on T. absoluta and is easy to mass rear (Morales et al., 2013). Moreover,
its combined use with the entomopathogenic Metarhizium anisopliae (Metschnikoff) (Hypocreales:
Clavicipitaceae) in the laboratory resulted in additive control effects despite the reduction of parasitoid

fitness by the fungus (Mama Sambo et al., 2022).

S5 Conclusions

Our results demonstrate the compatibility and the potential of N. tutae and PhopGYV to reduce population
growth and crop damage of 7. absoluta under semi-field conditions. N. tutae significantly restrained
population growth and crop damage cumulated over the entire experiment but appeared to be
outnumbered at the end of the trial. Intensity and timing of parasitoid releases are crucial and must be
adjusted precisely according to the time and level of pest infestation to ensure effective biological
control under field conditions. PhopGYV reduced crop damage to the same extent as N. tutae but strongly
reduced adult density in the third pest generation, whereas the parasitoid did not. Under the conditions

of our semi-field experiment, the combined use of PhopGV and N. futae had no additive effect compared
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to each biocontrol agent used alone. However, the interaction outcome could be affected by altered
population dynamics and environmental factors in real-world settings, as well as by reduced leaf
coverage during application of the virus under field conditions. Further investigations are warranted to
optimize the timing of application and dosage. The system should be studied under various
environmental conditions to advance this research area further, fully understand its potential, and
estimate possible benefits under real-world field or greenhouse conditions. Additionally, a cost-benefit
assessment of this control strategy could provide valuable information for smallholders, organic
growers, and large-scale productions. It would also be essential to study the seasonal and infestation
level variations in the efficacy of this control strategy. In summary, while more research is needed to
fully evaluate the potential of combining PhopGV and N. tutae for T. absoluta control, our findings

provide interesting insight into an innovative combination of biological control agents.
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4 General conclusions

4.1 Systematic review on combinations of biocontrol agents

Environmental pollution, loss of biodiversity, pest resistances, and risks to human health are among
the controversial effects of synthetic pesticides. Alternative methods for pest control are sought. Com-
bining biocontrol agents can improve pest control and reduce harmful effects on the environment. In
our systematic review, we showed that many combinations of parasitoids and entomopathogenic mi-
croorganisms are compatible and can be deployed together. Eighty percent of the biocontrol agent
combinations included in the reviewed papers were deemed compatible. Combinations, including par-
asitoids and fungi, were well represented in the literature. In contrast, few experiments were found
combining bacteria with parasitoids, despite the large number of Bt-biopesticides. Further research on
combining bacterial or viral biopesticides with parasitoids is required. The most studied microorgan-
isms of each category, i.e., B. bassiana and M. anisopliae for fungi, Btk for bacteria, as well as the
SeMNPV and the SfMNPV for viruses, were found compatible with many different parasitoids. However,
most of the studies were conducted in the laboratory, and new experiments under field conditions are
necessary to include agronomic and financial parameters in the final compatibility assessment. Moreo-
ver, most of the reviewed studies focused on the impacts of entomopathogenic microorganisms on
parasitoids. Few examined the effects of parasitoids on the development and dissemination of microbial
biocontrol agents. Further research is required to analyse how both types of biocontrol agents influence
each other in the field. Such an assessment should be conducted on more than one generation of par-
asitoids to highlight possible long-term effects. Appropriate timing of application and dosage must be
defined individually for each combination of biocontrol agents against each specific pest, as these are
key success factors. Combining biocontrol agents has the potential for pest control, yet interactions
between parasitoids and entomopathogenic microorganisms should be further researched. To develop
innovative methods, interdisciplinary work should be fostered. Pest biocontrol methods must be viable.
Therefore, the availability and the production costs of biocontrol agents should be assessed and further
improved.

4.2 Semi-field experiment on the biological control of Tuta absoluta

The results of our semi-field experiment demonstrate the compatibility and the potential of N. tutae
and PhopGV to reduce population growth and crop damage of T. absoluta under semi-field conditions.
N. tutae significantly restrained crop damage cumulated over the entire experiment but appeared to be
outnumbered at the end of the trial. Intensity and timing of parasitoid releases are crucial and must be
adjusted precisely according to the time and level of pest infestation to ensure effective biological con-
trol under field conditions. PhopGV reduced crop damage to the same extent as N. tutae but strongly
reduced adult density in the third pest generation, whereas the parasitoid did not. Under the conditions
of our semi-field experiment, the combined use of PhopGV and N. tutae had no additive effect compared
to each biocontrol agent used alone. However, the interaction outcome could be affected by altered
population dynamics and environmental factors in real-world settings, as well as by reduced leaf cover-
age during application of the virus under field conditions. Further investigations are warranted to opti-
mize the timing of application and dosage. The system should be studied under various environmental
conditions to advance this research area further, fully understand its potential, and estimate possible
benefits under real-world field or greenhouse conditions. Additionally, a cost-benefit assessment of this
control strategy could provide valuable information for smallholders, organic growers, and large-scale
productions. It would also be essential to study the seasonal and infestation level variations in the
efficacy of this control strategy. In summary, while more research is needed to fully evaluate the poten-
tial of combining PhopGV and N. tutae for T. absoluta control, our findings provide interesting insight
into an innovative combination of biological control agents.
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