

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Rundesamt für Landwirtschaft RIW

Klimafreundliche, nachhaltige Milchproduktion – Erfahrungen aus dem Ressourcenprojekt KlimaStaR-Milch

André Bernet, Leiter Milchvermarktung ZMP, 1. September 2023

Themen

- * Kurzvorstellung RP KlimaStaR
- * Aktueller Stand Umsetzung Ressourcenprojekt
- * Ergebnisse und Erfahrungen
- * Wie geht es im Bereich Klima und Milch weiter?
- * Fazit

Kurzvorstellung RP KlimaStaR

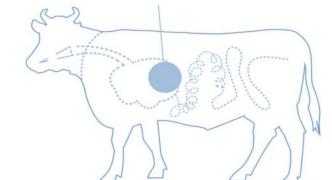
Organigramm Ressourcenprojekt KlimaStaR Milch

Projektleitung

Wissenschaft

Berner Fachhochschule

Hochschule für Agrar-, Forst- und
Lebensmittelwissenschaften HAFL


232 Milchbetriebe

Thema Klimaschutz ist gekommen und zu bleiben - auch in Milchproduktion

* Schweizer Milchqualität ist Top aufgrund graslandbasierter, standortangepasster Fütterung

* Milchkuh ist <u>kein</u> Klimakiller

- Milchproduzenten nehmen Heft selbst in die Hand
- Wissen generieren und mitbestimmen/mitentwickeln
- Beitrag leisten, um THG-Emissionen zu reduzieren

* Grundlage für einen Weiterentwicklungsschritt der nachhaltigen, ressourcenschonenden und standortgerechten Schweizer Milchwirtschaft

* Nutzen für die teilnehmenden Betriebe:

- * Jeder Landwirt kennt seinen THG-Fussabdruck, Wissensvorsprung, bereit für neue AP
- Jährliche Standortbestimmung und Monitoring der Fortschritte (THG, NMK, FK)
- * Attraktive Abgeltungsprämien
- * Ganzheitliche Betriebsberatung (ökonomisch, ökologisch und sozial)

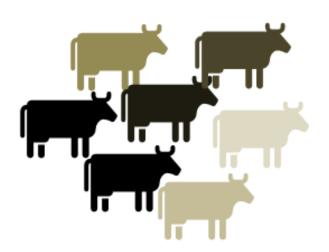
Wirkungszielsetzungen und Ansatzpunkte für Umsetzung

Reduktion der THG-Emissionen um 20 %

Fütterung, Herdenmanagement, Energie, Hofdünger;

Verminderung der Nahrungsmittelkonkurrenz um 20 %

Kraftfutterkomponenten aus Nebenprodukten, Wiesenfutterqualität, Zwischenfutternutzung, überbetrieblicher Handel mit Wiesenfutter, Flächentausch


Minderung der **Flächenkonkurrenz um 20** % in einer Vertiefungsgruppe von 86 Betrieben (1/3 der Milchmenge)

Erhöhung Anteil Milchviehfutterproduktion auf nicht-ackerfähigen Flächen

Erklärung Feed-Food Competition

Futterration

Wie viel Nahrungsprotein/-energie für den Menschen steckt in den verfütterten Futtermitteln drin?

Futterbedarf und Produktion der Herde Nahrungsmittelkonkurrenz

Flächenkonkurrenz

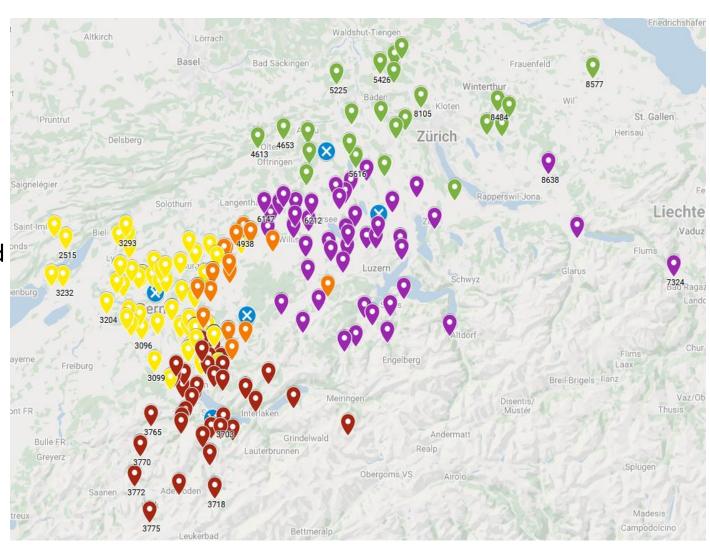
Landnutzung

Wie viel pflanzliches Nahrungsprotein/energie hätte für den Menschen auf den Futterflächen produziert werden können?

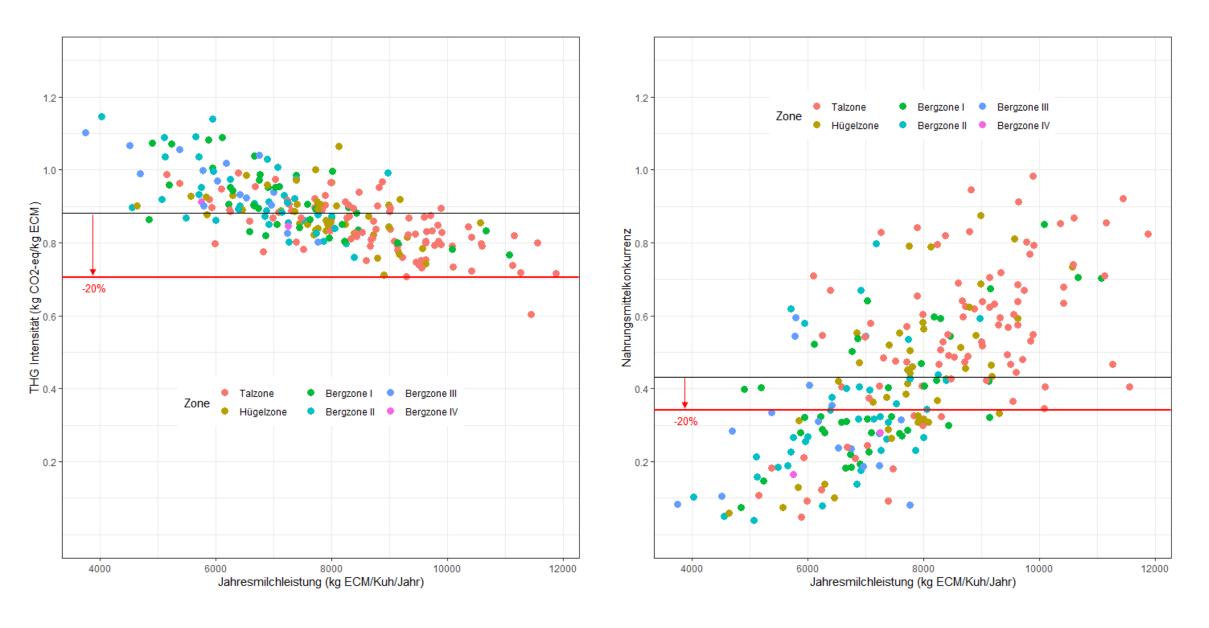
Aktueller Stand Umsetzung Ressourcenprojekt

Aktueller Stand Umsetzung

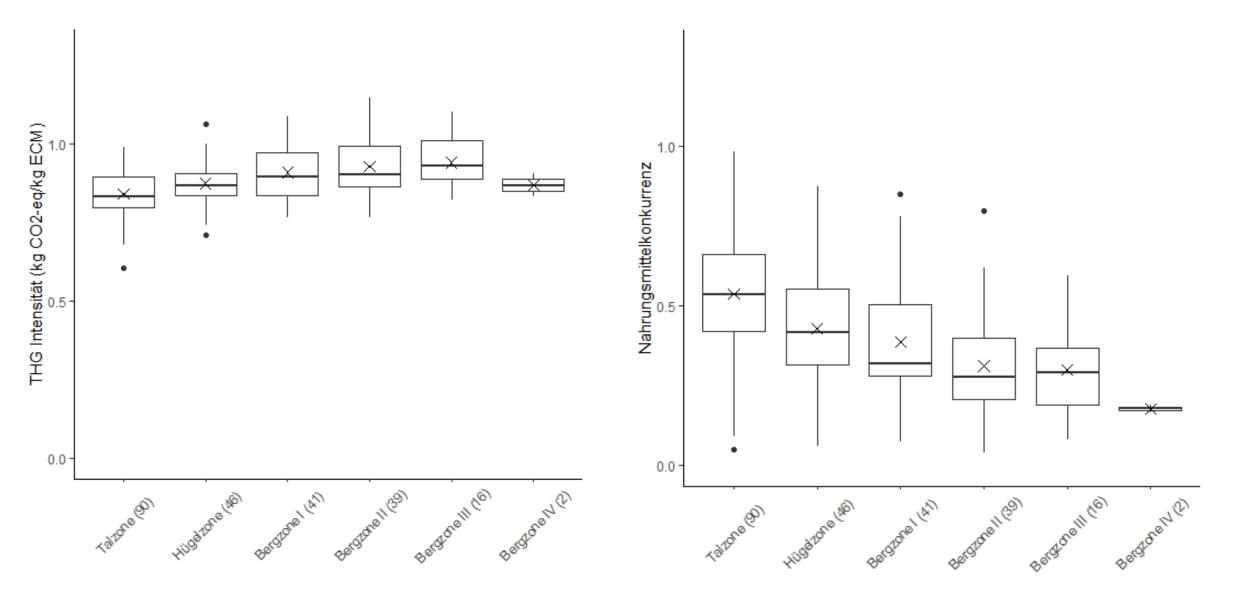
- * Vorbereitungsphase (Februar bis April 2022)
 - * Information, Rekrutierung Betriebe, Ausbildung Berater
 - * 474 interessierte Betriebe mit 140 Mio. kg Milch
 - * ausgewählt 234 Betriebe mit 58 Mio. kg Milch
- * Umsetzungsphase (Seit Mai 2022)
 - * Datenerfassung, Festlegung Einsparungsziele THG und NMK pro Betrieb
 - * Massnahmen-Workshops durch Beratung (Wahl betriebsspezifischer Massnahmen)
 - * Rekrutierung Vertiefungsbetriebe
 - Erfassung Daten Ausgangslage Flächenkonkurrenz
 - Erfassung Daten 2022 THG und NMK und Auswertung/Plausibilisierung
 - * Auszahlungen für Betriebe Projektjahr 2022
 - * Massnahmenworkshop 2023 und Start Vertiefungsgruppe

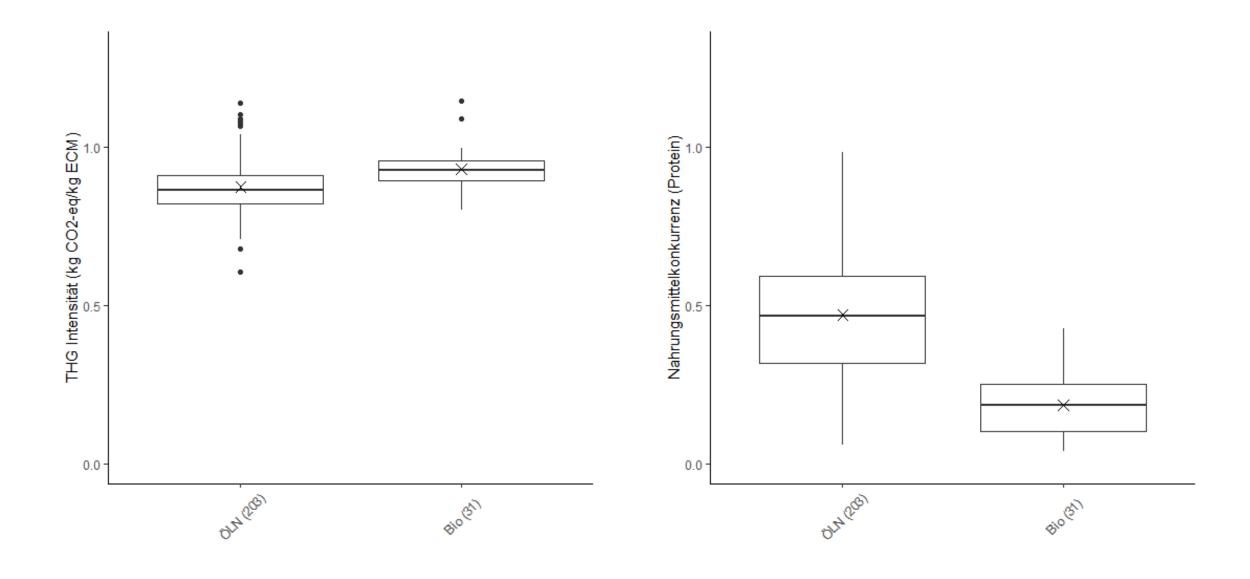

Auswahl und räumliche Verteilung teilnehmende Betriebe

* Total 232 Betriebe/57 Mio. kg Milch


- * 50 ZMP (15 Mio. kg Milch)
- * 41 Emmi (14 Mio. kg Milch)
- * 141 aaremilch/Nestlé (29 Mio. kg Milch)

* Auswahlkriterien


- * Angemessene Vertretung der verschiedenen Regionen sowie Berg- und Talgebiet
- * Unterschiedliche Produktions- und Betriebsformen
- * Unterschiedliche Betriebsgrössen
- Bereitschaft für Teilnahme in der Vertiefungsmodul
- * Anmeldedatum


THG-Intensität und NMK vs. Jahresmilchleistung

Einfluss der Produktionszone auf THGE-Intensität und NMK

Einfluss der Produktionsform auf THGE-Intensität und NMK

Ergebnisse und Erfahrungen

Ergebnisse Auswertung 2022

Gesamt: 232 Betriebe	Einheit	2019-2021	2022	Veränderung
Milchkühe Total	GVE	34.79	36.64	5.32%
Jahresmilchleistung	kg ECM / Jahr	7'738.23	7'641.49	-1.25%
Lebtagleistung	kg ECM / Lebtag	13.23	13.31	0.59%
Nutzungsdauer	Jahre	4.16	4.35	4.66%
Proteingehalt Jahres ration	g RP / kg TS	160.07	158.91	-0.72%
Energiegehalt Jahres ration	NEL / kg TS	6.14	6.14	0.00%
Futterverwertung Herde	g TS / kg ECM	1'104.87	1'100.70	-0.38%
Kraftfutterintensität	g TS / kg ECM	108.44	103.56	-4.50%
Kraftfuttermenge	kg TS / Kuh Jahr	735.43	697.09	-5.21%
Nahrungsmittelkonkurrenz NMK Protein	vRP / vRP	0.441	0.401	-0.040 (-9.08%)
THG / kg ECM	kg CO2 eq / kg ECM	0.883	0.876	-0.007 (-0.76%)

Fachliche Erkenntnisse des ersten Projektjahres

- Die Reduktion der Kraftfuttermenge und Änderung der darin enthaltenen Komponenten (z.B. sojafrei) sind wichtige, schnell wirksame Hebel.
- Es geht vor allem um Ökoeffizienz. Steigt die Milchmenge stärker als THGE und NMK, dann sinken die Indikatorwerte.
- · Die Resultate unterliegen jahres- und witterungsbedingten Schwankungen.
- Die genauen Ursachen des Betriebsergebnisses sind vielfältig und individuell (sogar eine Fehleingabe beim Ökostrom kann Prämien kosten). Patentrezepte für «Klima-Milch» gibt es kaum.

Wichtige THG-Stellschrauben

- Verdaulichere Ration => bessere Futterverwertung => höhere Milchleistung, weniger
 Methanemission aus dem Pansen => THGE sinken und werden auf mehr Milch verteilt. Aber:
 Die NMK darf nicht steigen (Komponenten im KF beachten!).
- Optimierung Grundfutter (RP, NEL, Verdaulichkeit) => höhere Milchleistung, weniger Methanemission, KF-Einsparung => THGE und NMK sinken.
- Leichtere Kühe => weniger Erhaltungsbedarf => höherer Anteil geht in Milchleistung => THGE sinken und werden auf mehr Milch verteilt.
- Reduzierter Rohproteingehalt => weniger Stickstoff im Hofdünger => THGE sinken.
- Methanmindernde Futterzusätze => weniger Methanemission aus dem Pansen, z.T. höhere Milchleistung => THGE sinken und werden z.T. auf mehr Milch verteilt. Im Projekt und KLIR-Tool noch nicht aktiviert.
- Tieferes Erstkalbealter (soweit sinnvoll) bzw. längere Nutzungsdauer => weniger Kühe und somit weniger Futterverzehr für gleiche Milchmenge => THGE sinken.

Wichtige THG-Stellschrauben

- Gülle in Biogasfermenter => weniger Methan aus der Lagerung (bzw. CO₂ statt CH₄).
- Abdeckung Güllelager => weniger Austausch mit der Luft => weniger THGE.
- Güllelagerung ausserhalb statt unter Gebäude => tiefere Gülletemperaturen => weniger THGE.
- Mist statt Gülle => aerobe Umgebung => weniger THGE.
- Verlängerung der Weidedauer => weniger Ammoniakemission, damit später weniger Lachgas => weniger THGE.
- **Gülleansäuerung** => weniger Ammoniakemission, damit später weniger Lachgas => weniger THGE, mehr Stickstoff im Dünger. *Mehr Kalkung erforderlich*.

Wichtige NMK-Stellschrauben

- Mehr Milch aus gleicher KF-Menge (pro kg RP), oder konstante Milchleistung bei reduzierter KF-Menge => NMK sinkt.
- Konstante Milchleistung (und konstanter vAH-Wert) bei reduziertem RP-Gehalt der Ration => NMK sinkt.
- Wahl eines KF mit tieferem vAH-Wert (Deklaration durch Futtermühlen) => Ausgleich der Ration oder Steigerung der Milchleistung => NMK sinkt.
- Grundfutterration ausgleichen statt mehr Leistungsfutter => für Menschen verdaulicher Anteil des Futters ist für GF (ausser Mais) gleich Null, daher führt eine bessere Verwertung des GF zu sinkender NMK.

Was haben wir bis jetzt erreicht?

- Projektorganisation hat Feuertaufe bestanden: 15 Organisationen mit über 30 Mitarbeitenden. Durchführung von insgesamt 38 Workshops. Wissenstransfer von der Wissenschaft über die Beratung zum Milchproduzenten
- * Fussabdrücke für Treibhausgase und Nahrungsmittelkonkurrenz liegen vor für 234 Betriebe für die Referenzperiode 2019-2021 und für 232 Betriebe für das erste Projektjahr 2022 nur 2 Betriebe sind ausgestiegen und Prämien wurden wie geplant im April ausbezahlt.

- * Ausgangssituation für Flächenkonkurrenz liegt vor von 86 Betrieben, betriebsindividuelle Umsetzungsplanung läuft und erste Nachhaltigkeitsanalyse RISE ist in Bearbeitung.
- * vAH-Deklaration von Mischfuttermitteln steht zur Verfügung: Aufgegleist mit UFA und VSF, stehen seit Januar diverse Sortimente mit vAH-armen Mischfuttermitteln zur gezielten NMK-Senkung zur Verfügung.

Wie geht es im Bereich Klima und Milch weiter?

- * Projekt läuft bis 2027 (2029)
- * Parallel zum Projekt müssen die gewonnen Erkenntnisse dazu verwendet werden um **auf nationaler Stufe** im Bereich Klima und Milch weiter zu kommen
- Möglicher Weg: Software KLIR wird auf nationaler Stufe eingesetzt und Teil vom swissmilk green Phase 2 der BO Milch

* 1. Phase

- * Erhebung vom THG-Fussabdruck aller Schweizer Milchbetriebe
- * Jährliches Monitoring der weiteren Entwicklung

* 2. Phase

* THG-Ziele auf dem Betrieb definieren und entschädigen

* 3. Phase

* Ausdehnung auf die gesamte Landwirtschaft

Fazit

- * Projekt ist sehr erfolgreich gestartet
- Organisation und Vernetzung aller Partner zum richtigen Zeitpunkt ist eine Herausforderung
- * Umsetzung der Nahrungsmittelkonkurrenz und Flächenkonkurrenz ist sehr anspruchsvoll
- * Projekt passt thematisch sehr gut zu den heutigen Herausforderungen der Gesellschaft und ist entsprechend sehr spannend
- * Wir lernen alle sehr viel alle Partner sind sehr motiviert
- * Projekt mit so vielen Betrieben in dieser Datenqualität und –menge ist einzigartig und bildet eine gute Basis für die weitere Entwicklung
- * Projekt muss Basis sein für ein Ausrollen auf nationaler Ebene

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Bundesamt für Landwirtschaft BLW

Vielen Dank für die Aufmerksamkeit

Weitere Infos und Kontaktdaten unter www.klimastar-milch.ch