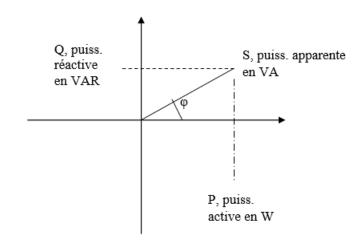
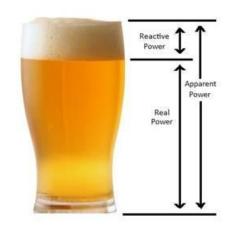
Pilotprojekt Camille Bloch: Blindleistungsregelung mit PV – auch in der Nacht

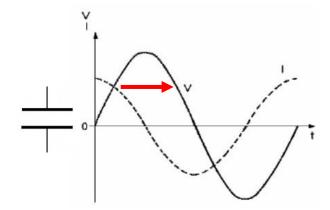
BFH Fachtagung Netzanschluss

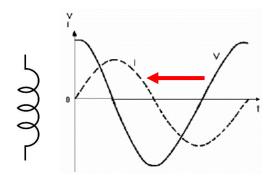
Marine Cauz
Florent Jacqmin
Jean Cattin

31. Mai 2022





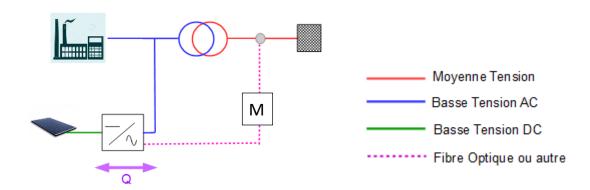

Konzept


Einleitende Begriffe

- 1 Scheinleistung = Wirkleistung & Blindleistung
- 2 Blindleistung ist beim Stromtransport unerwünscht
- 3 Blindleistung verursacht einen Spannungsabfall am Ende der Leitung

A Sharing its consolid on sharing at an incompany

Allgemeine Idee



Das Potenzial von Wechselrichtern für die Blindleistungskompensation bewerten

Stärken

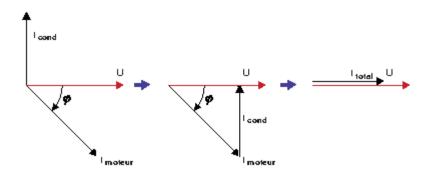
- Eine (teilweise oder vollständige) Alternative zu standardmässigen statischen Kondensatorbatterien aufzeigen
- Das Q/P-Verhältnis regulieren, um Kosten für die Abrechnung von Blindleistung zu vermeiden

Wenn ein Industrieller PV installiert: und damit Q/P steigt. Nun berechnen die VNB Blindleistung, wenn : Q > 0.5 * P

PLANDING CONSeils en énercies et environnemen

Kompensationsbänke

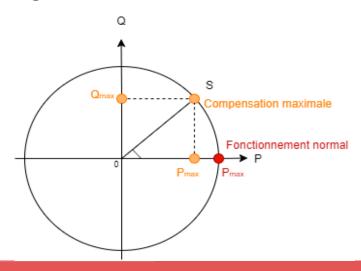
Eine Kondensatorbatterie besteht aus einer Reihe von Kondensatoren, die sich bedarfsgerecht in einem vorgegebenen Regelschritt einschalten, um den zulässigen Wertebereich des $\cos \phi$ einzuhalten.


Ziel

$$\frac{Q}{P} = \frac{\textit{Vom VNB erfasste Blindleistung des Standorts}}{\textit{Aus dem Netz entnommene Wirkleistung des Standorts}} < 50\%$$

$$\cos \phi > \sqrt{2/3} = 0.8$$

Prinzip



PLANGE IS ON Sells en énergies et environneme

Ausgleich mit PV-Wechselrichtern

$$P_{max} = \sqrt{\left(S_N^2 - Q_{comp}^2\right)}$$

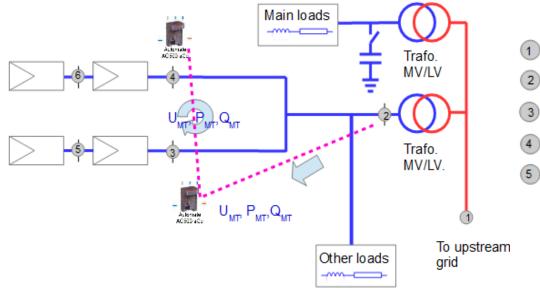
- S_N : Scheinleistung, die in den technischen Unterlagen angegeben ist
- Q_{comp} : Blindleistung zu kompensieren
- P_{max} : max Wirkleistung, die von den Wechselrichtern erzeugt werden kann

Avantages Inconvénients

- Flexibilité
- Puissance réactive capacitive et inductive
- Pas de surcoût de maintenance

- Installation PV requise
- Risque de brider la production de puissance active
- Besoin potentiel de surdimensionner les onduleurs

Implementierung


Pilotstandort

Die Fabrik wurde erweitert mit

- Eine Erweiterung des Produktionsbereichs
- Der Bau eines Verwaltungsgebäudes

Architektur

- MV connection point of the overall industrial site
- LV side of MV/LV trafo
- Connection point of PV group 1
- 4 Connection point of PV group 2
 - Individual inverters output

DEATH PROPERTY OF THE PROPERTY

PV-Anlage

Auf den beiden neuen Gebäuden wurden PV-Anlagen installiert.

- 141 kWp auf dem Dach der Agora
- 168 kWp auf der Erweiterung des Produktionsgebäudes

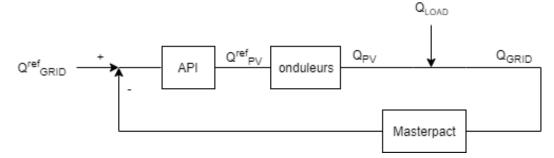
Die kumulierte Leistung ermöglicht die Produktion von 300'000 kWh/Jahr

Die Wechselrichter wurden so ausgewählt, um den Einschränkungen des Projekts entsprechen:

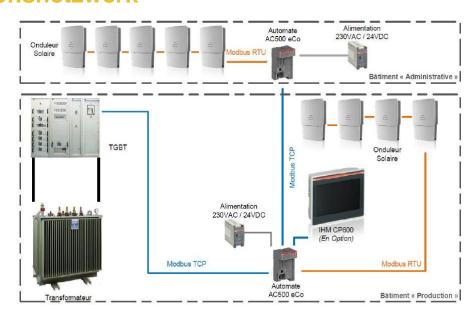
- Steuerung in cos phi und Menge der erzeugten Blindenergie
- Kommunikation Kompatible mit ABB-Steuerungen
- Diese Wechselrichter ermöglichen eine Blindleistungsgeneration bis zu 80% ihrer Nennleistung.

Fonctionnement classique (sans compensation)

- P_{max} = 261 kW
- Q_N = 0 kvar


Compensation maximale

- P_{max} = 158 kW
- Q_N = 208 kvar


Prinzip der Kontrolle

Regler

- Anpassung der Betriebspunkt des Systems
- Reaktivität: Automatisch auf externe Störungen

Kommunikationsnetzwerk

PLANDER ET ENVIRONMENTE

Regulierung und Betriebspunkt

Das System verfügt über zwei Regulierungsmodi:

- Ständige Regulierung: entweder ON oder OFF
- Regelung im AutoMode: automatisch, abhängig von der Q/P-Schwelle

Das System verfügt ausserdem über zwei Betriebsarten:

- Fest: Q wird auf einem festen Wert gehalten
- Dynamisch: Q schwankt, um das setpoint X = Q/P fest zu halten

Tests

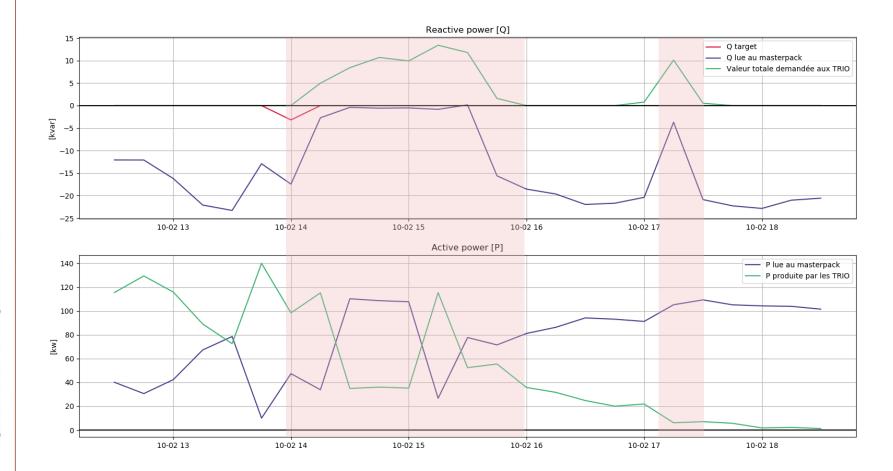
Ingénieurs conseils en énergies et environnemen

Fähigkeit, einen festen Wert zu kompensieren

Ziel die am Masterpact gemessene Blindleistung zu kompensieren

Regulierungsmodus: Permanent

Betriebspunkt: Fest


Referenzwert: 0 kvar

	Période 1	Période 2	
Heure de début	14h10	17h12	
Heure de fin	15h56	17h30	
Durée du test	106 min	18 min	
Nombres de TRIO actif	10	10	
Période d'activité	Journée de travail	Fin de journée de travail	
Temps d'établissement	8 min	7 min	
Valeur moyenne compensée (produite/consommée) par le système	15 kvar	20 kvar	
Erreur absolue moyenne en régime établi	0.43 kvar	3.7 kvar	

PICAL MANAGEMENT OF THE MANAGEMENT CONSEILS OF THE MANAGEMENT OF T

Fähigkeit, einen festen Wert zu kompensieren

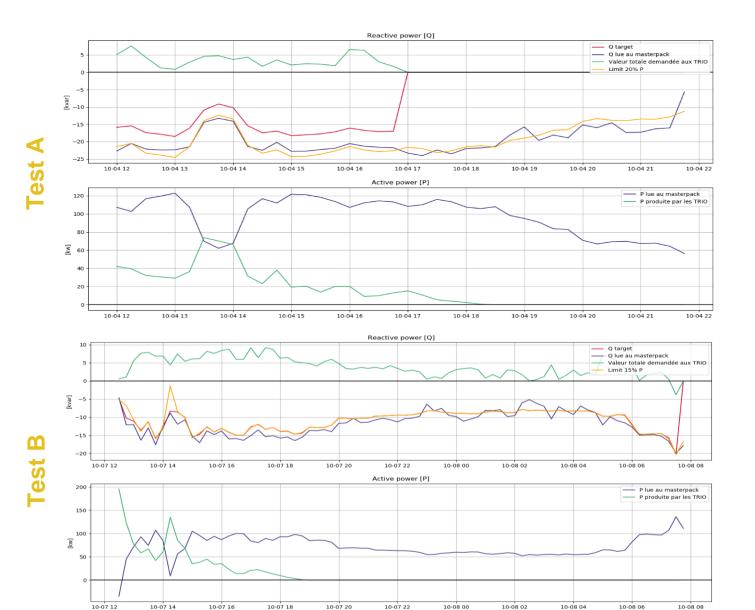
P- und Q-Werte am Masterpact P und Q Leistungen, die von PV-Wechselrichtern erzeugt werden

Fähigkeit, ein maximales Q/P-Verhältnis einzuhalten

Ziel Aufrechterhaltung eines maximalen Q/P-Verhältnisses

$$Q < x\% * P$$

- Regulierungsmodus: Q/P-Ratio automatisch (AutoMode)
- Betriebspunkt: Dynamisch
- Die vom System berücksichtigten Leistungswerte werden über einen Zeitraum von 1min gemittelt.

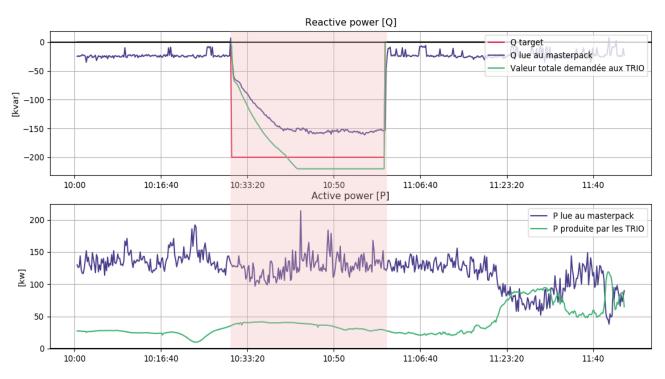

	Test A	Test B	
Facteur de déclenchement de l'AutoMode	Q ≥ 20% * P	Q ≥ 15% * P	
Valeur de référence	Q = 15% * P	Q = 15% * P	
Heure de début	12h	12h	
Heure de fin	17h	7h45	
Durée du test	5h - 300 min	19h45 – 1'185 min	
Nombres de TRIO actif	10	10 entre 12h et 19h30 1 entre 19h30 et 7h30 10 entre 7h30 et 7h45	
Période d'activité	Journée ouvrable	Jour ouvrable	
Valeur moyenne demandée aux TRIO	5.22 kvar	5.92 kvar	
Erreur relative moyenne en régime établi	32%	23%	

Fähigkeit, einen festen Wert zu kompensieren

und Q-Werte am Leistungen Masterpact Masterpact die von PV-Wechselrichtern erzeugt werden

Zielwert

Masterpact abgelesenen Verhältnis Wirkleistung, Zielwert für:



DISCORDIS EN énercies et environnement

Grenzkapazitäten des Systems

Zweck Wechselrichtern physikalischen Grenzen bestimmen: Q_{comp} = 200 kvar

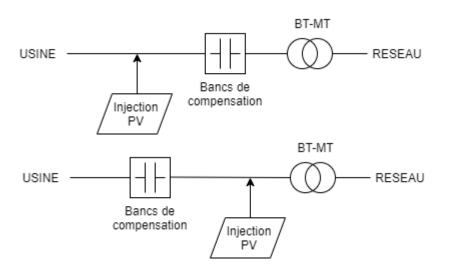
- In 10 min steigt Q nicht von -25 kvar auf -150 kvar
- Der Wert = -220 kvar der maximale theoretische Wert
- Masterpact gemessene Blindleistung stagniert bei -150kvar
- Max. Wirkleistung der Wechselrichter :

$$P_{\text{max}} = \sqrt{(S^2 - Q^2)} = \sqrt{(261^2 - 200^2)} = 168 \text{ kW}$$

Ergebnisse & Diskussion

PLAN A REPLACE IN THE PROPERTY OF THE PROPERTY

Wirtschaftliche Analyse


Vergleich der beiden Alternativen zur Blindleistungskompensation

	Onduleurs PV Base	Onduleurs PV Option compensation	Armoire de compensation
Coût d'installation	85 CHF / kW	Intégré De 0,5 kvar/kW à 1 kvar/kW	90 CHF / kvar
Coût régulateur + coûts annexes (comptage, électricien,)		11'300 CHF + 3'700 CHF	inclus
Maintenance	1'000 CHF / an / 100 kW	Pas de surcoût supplémentaire	1'000 CHF / an
Durée de vie moyenne	15 ans	-	>30 ans
Surcoût pour surdimensionner de 20%		+ 5 / 10%	+ 15 %

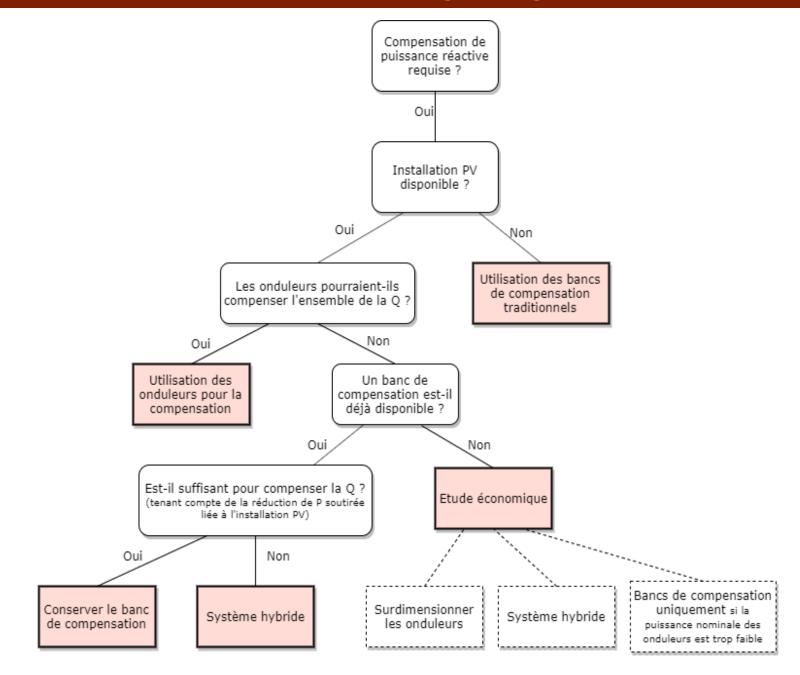
- /!\ Mittelwerte, mit denen eine Grössenordnung angegeben werden kann
- Wenn keine Kondensatorbank vorhanden oder zu alt ist, sind Wechselrichter eine wirtschaftlich interessantere Lösung.
- Eine vorhandene Ausgleichsbatterie durch die Wechselrichter zu ersetzen, kann kostengünstig sein, wenn deren Ausgleichskapazität ausreicht.

Kommentare

- Reaktionszeit
 - Min. Reaktionszeit der Wechselrichter: 20 Sek.
 - Reaktionszeit der Kompensationsschränke: 15 Sek.
- Effektive Verrechnung
 - Potenzielle Notwendigkeit, die Wechselrichter überzudimensionieren, um eine Einschränkung der von den Wechselrichtern erzeugten Wirkleistung zu vermeiden
- Ergebnisse am Tag und in der Nacht
 - Nacht: die PV-Produktion wird nicht beeinträchtigen
 - Nacht: stabileres Konsumverhalten
- Begrenzung der Studie
 - Zusätzliche Einschränkungen für Hybridsysteme

Dies ist die Situation, in die CB geraten könnte, wenn die Kompensation von der Station CB1 aus erfolgt.

PLAN MANAGEMENT AND THE REPORT OF THE PROPERTY OF THE PROPERTY


Camille Bloch

- Ergebnis der Tests : Q kann durch die Wechselrichter kompensieren sein
- Das Projekt zeigte auch, wie schwierig es ist, an die Messdaten heranzukommen
- Analyse des Fabrikverbrauchs: August 2019

Consommation de jour sur le réseau		Consommation de nuit sur le réseau	
Consommation active, P	218'800 kWh	Consommation active, P	118'880 kWh
Consommation réactive, Q	53'160 kvarh	Consommation réactive, Q	23'880 kvarh
⇒ Q = 24% * P		⇒ Q = 20% * P	

- Trotz der PV-Anlage hält die Fabrik Q < 50% * P
- Derzeit verfügt der Standort über eine 720-kvar-Ausgleichsbatterie.
- Die Fabrik könnte heute aufgrund einer Unterdimensionierung ihrer Wechselrichter die Ausgleichsbänke nicht durch ihre Wechselrichter ersetzen:
 Max. Kompensation = 150 kvar.
 - Wenn die Fabrik plant, ihre PV-Anlage auf dem Dach der Hauptfabrik zu erweitern, könnten die Wechselrichter überdimensioniert werden, um die Kondensatorbatterien zu ersetzen

Schlussfolgerung

Potenzielle zukünftige Nutzungen

- Durch die Implementierung eines (Standard-)Reglers innerhalb der Wechselrichter könnte diese Lösung ohne zusätzliche Kosten für die Industrie angeboten werden.
- Nachts könnten die PV-Anlagen für Netzdienste genutzt werden, um den neuen PV Anlagen einen doppelten Nutzen zu verleihen.

Danke für Ihre Aufmerksamkeit

PLANAIR

Beratende Ingenieure für Energie und Umwelt

Marine Cauz

Innovationsingenieurin
Rue Galilée 6
CH-1400 Yverdon-les-Bains - Schweiz
T +41 (0)24 566 52 28
marine.cauz@planair.ch

PLANAIR

Beratende Ingenieure für Energie und Umwelt

Florent Jacqmin

Leiter Photovoltaik
Rue Galilée 6
CH-1400 Yverdon-les-Bains - Schweiz
T +41 (0)24 566 52 07
florent.jacqmin@planair.ch

PLANAIR

Beratende Ingenieure für Energie und Umwelt

Jean Cattin

Leiter PV-projekten und Energiesystemen Rue Galilée 6 CH-1400 Yverdon-les-Bains - Schweiz

T +41 (0)24 566 52 13
Jean.cattin@planair.ch

Aramis: Projektbericht

