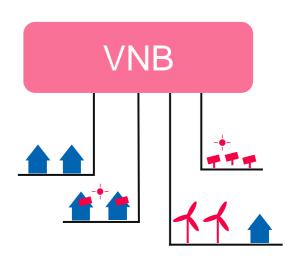


WISSEN TECHNIK LEIDENSCHAFT

NA-Schutz bei Wechselrichtern: Situation in Österreich und Fragen der Netzbetreiber

Dipl.-Ing. Carina Lehmal

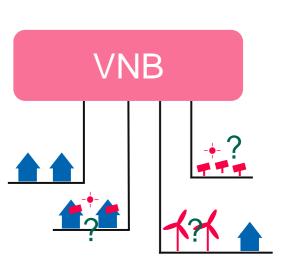
Technische Universität Graz



Generelles

Aufgabe der VNBs und zukünftige Rollen:

- Sicherer und zuverlässiger Netzbetrieb
- Systemführung im Verteilnetz
- Versorgungswiederaufbau


- → Ermöglichung des Zugangs von dezentralen Erzeugern
 - → Dezentrale Erzeuger müssen steuerbar sein

Wie werden dezentrale Erzeuger steuerbar?

- Wahrung Gleichgewicht zwischen P dezentrale Erzeugung
- Funktionierende Schutzeinrichtungen
- Überprüfbarkeit dezentraler Erzeuger bei IBN
- Inselnetzbildung vermeiden
- → NA-Schutz soll nach Norm funktionieren
 - Aber macht der NA-Schutz so Sinn?

Bedenken der Netzbetreiber

- Menschliche Fehlerquellen bei der IBN
 - Fehlendes Wissen bei Installateuren
 - Quantität an Umrichtern
 - Änderungen der Spezifikationen
 - Andere Funktionalität der Umrichter

Bedenken der Netzbetreiber

- Menschliche Fehlerquellen bei der IBN
- Mehr Schutzgeräte sind mehr Fehlerquellen
 - Was ist der richtige Messort?
 - Überprüfbarkeit der Schutzfunktion?
 - Funktion der Firmwareupdates des Umrichter?

Bedenken der Netzbetreiber

- Menschliche Fehlerquellen bei der IBN
- Mehr Schutzgeräte sind mehr Fehlerquellen
- Ungewollte Inselnetzbildung
 - Gefahr für Menschen und Betriebsmittel

Gegenmaßnahmen

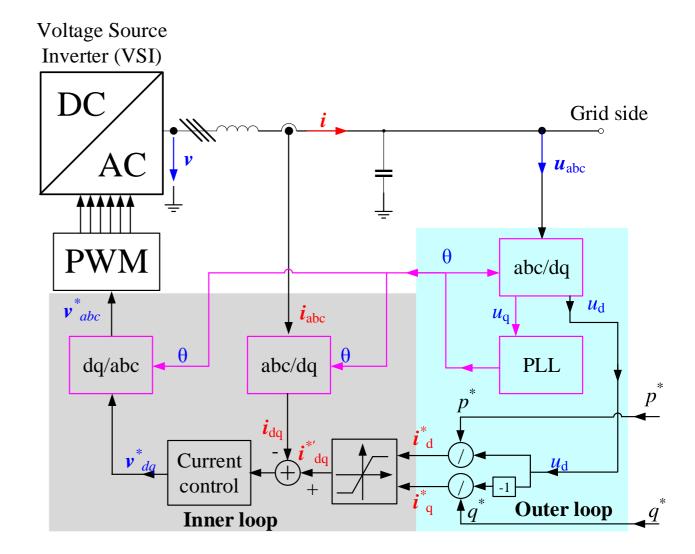
- Menschliche Fehlerquellen bei der IBN
- Mehr Schutzgeräte sind mehr Fehlerquellen
- Ungewollte Inselnetzbildung
- Zukunft: Netzführende Umrichter

Gegenmaßnahmen

- 1) Einigung auf Testszenarien mit Laboruntersuchung von unterschiedlichen Umrichtertypen
 - → Forschungsprojekt soll Bewusstsein für Änderungen im Netz schaffen
- Ansprechen der Bedenken der Netzbetreiber und Findung von Lösungsansätzen

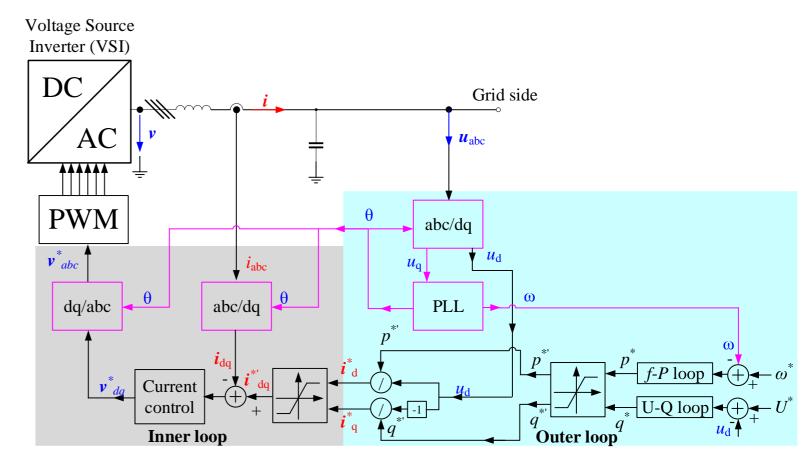
Gegenmaßnahmen

- Menschliche Fehlerquellen bei der IBN
 - → Sensibilisierung der Installateure
- Mehr Schutzgeräte sind mehr Fehlerquellen
 - → Einigung auf eine Vorgehensweise für Anlagen über 30kVA
- Ungewollte Inselnetzbildung
 - Externer NA-Schutz verhindert diese nicht!
- Zukunft: Netzführende Umrichter
 - → Out-of-Scope des Forschungsprojektes



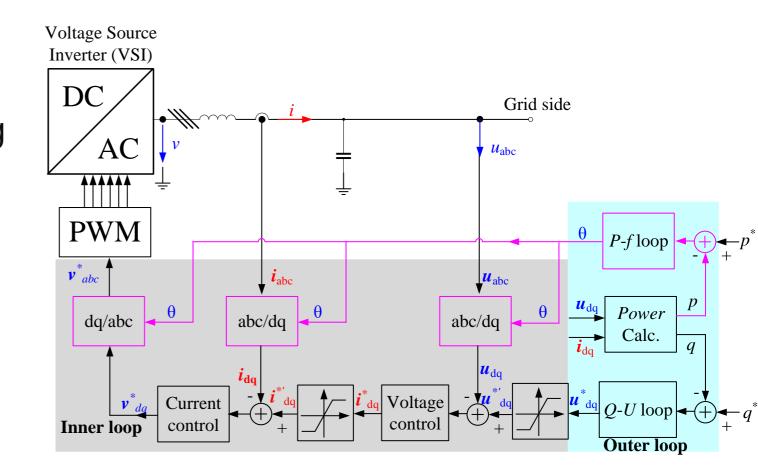
Arten von Umrichtern

- Netzfolgende Umrichter
 - Benötigt vorgegebene Netzspannung und Frequenz
 - Synchronisation mittels PLL



Arten von Umrichtern

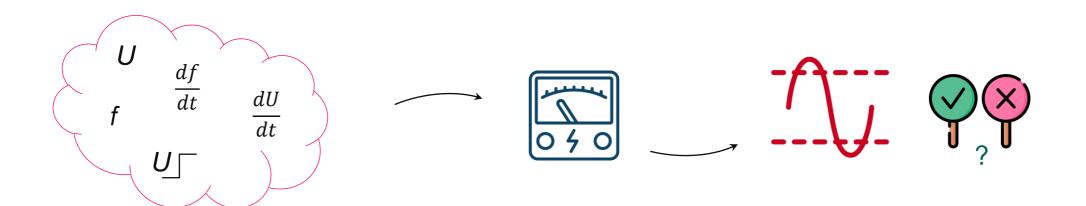
- Netzstützende Umrichter
 - Benötigt vorgegebene Netzspannung und Frequenz
 - Synchronisation mittels PLL
 - Eingebaute Statik



Arten von Umrichtern

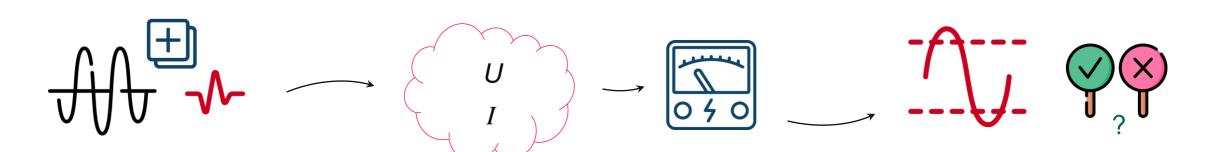
- Netzbildende Umrichter
 - Erzeugt Referenzspannung und Frequenz selbst
 - Kann Netz selbst aufbauen
 - Benötigt entsprechende DC-Seite

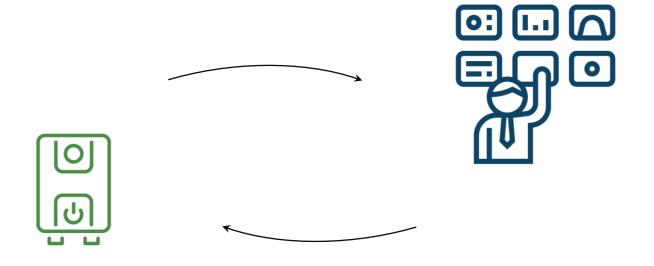
Offene Punkte mit externem NA-Schutz


- Ungewollte Inselnetzbildung
 - Viele Geräte führen nur passive Inselnetzerkennung durch
 - → gilt als unzureichend
 - Verfolgung von Über-/Unterspannung oder Frequenz bzw. ROCOF/ROCOV gibt zu große Nicht-Erkennungszone
- → Umrichter führt aktive Inselnetzerkennung durch
 - Rückkopplung innerhalb Steuerung mit Versuch Netzgrößen zu verändern

Inselnetzerkennung

- Passiv
 - Basierend auf Messung und eingestellten Grenzen
 - Methode vom externer NA-Schutz




Inselnetzerkennung

- Aktiv
 - Basierend auf Signalveränderung und Messung der Reaktion
 - Methode vom internen NA-Schutz

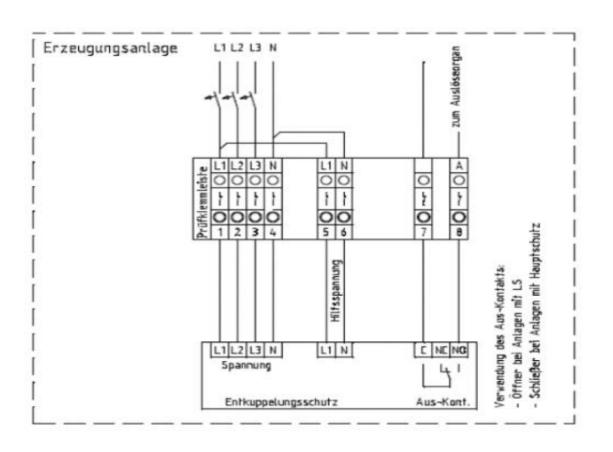
Inselnetzerkennung

- Kommunikations-basiert
 - Direkte Verbindung zwischen Umrichter und EVU

Was gilt in Österreich?

< 30kVA selbsttätig wirkende Freischaltstelle

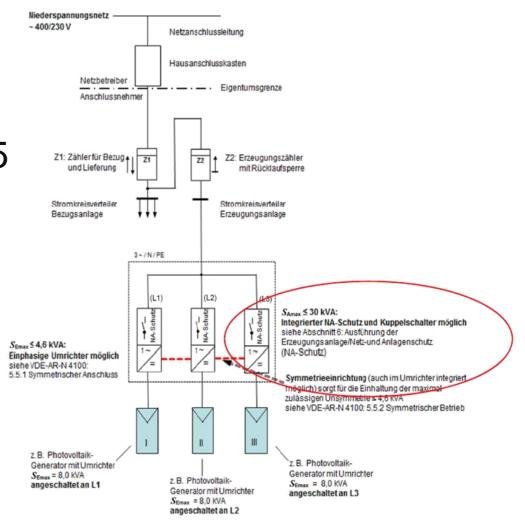
- > 30kVA eigenes Betriebsmittel für zentrale Schutzeinrichtung
 - Entkupplungsstelle/Schaltfunktion muss überprüfbar sein
 - Allpolige galvanische Trennung bewirken
 - Prüfklemmenleiste als Kopplung wird installiert mit dem der interne und externe NA-S ausgelöst werden kann



Was gilt in Österreich?

Prüfklemmenleiste

- Vorgabe von analogen Größen interner NA-Schutz überprüfbar
- Auslösung vom dezentralen Kuppelschalter möglich



Was gilt in Österreich?

Anzahl an Kuppelschalter

- Anwendung der VDE-AR-N 4100/4105
- 1 Kuppelschalter
 - Vom NA-Schutz angesteuert

LEIDENSCHAFT

NA-Schutz bei Wechselrichtern: Situation in Österreich und Fragen der Netzbetreiber

Dipl.-Ing. Carina Lehmal

Technische Universität Graz

