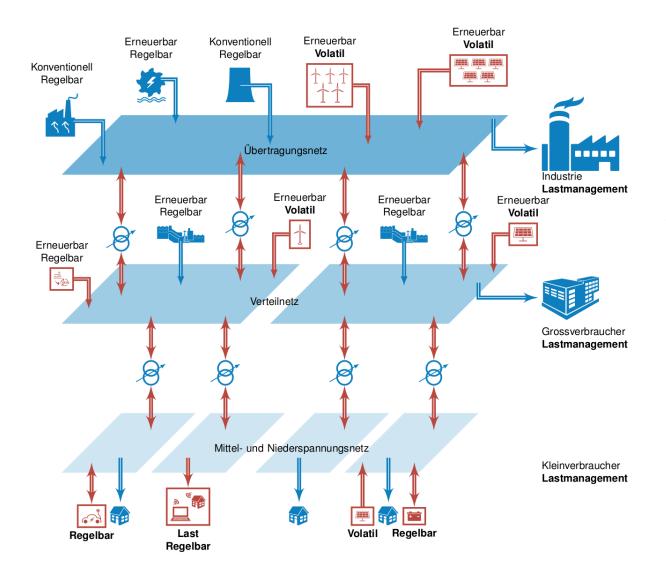


Hintergrund: Netzbetrieb Gestern / Heute



- Planbarkeit von Lasten, Preisverlauf
- und Produktionskapazität
- Ausreichende Stabilitätsreserven im Verteilnetz
- Unidirektionaler Lastfluss
- Etablierte Betriebsabläufe

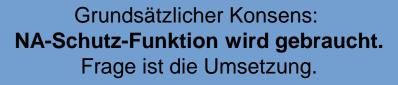
Hintergrund: Netzbetrieb Heute / Morgen

- Bedingte Planbarkeit von Lasten
- und Preisverlauf, volatile Produktion
- Reduzierte Stabilitätsreserven
- Bidirektionaler Lastfluss, Produktion
- auf Verteilnetzebene
- Ånderung der Betriebsabläufe erforderlich

Hintergrund

• 2 (und noch mehr) Dokumente, aber Inkonsistenzen in der NA-Schutz-Frage:

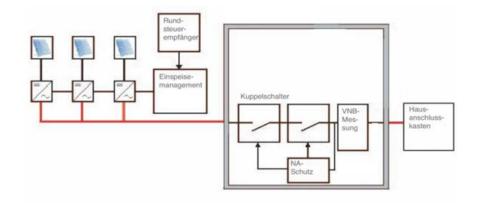
Branchenemofehlung Strommarkt Schweiz

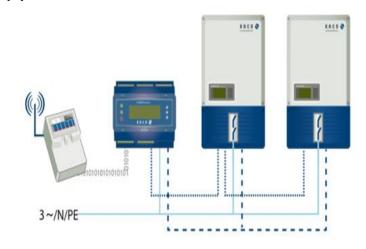

Empfehlung Netzanschluss für Energieerzeugungsanlagen

Technische Anforderungen für den Anschluss und Parallelbetrieb in NE 3 bis NE7

Nach Netzebenen aufgeteilt.
Fokus ist Anpassung von NE7.
Stand 12/2020: FRT, Leistungsgruppen,
Blindstrom

Swissolar Empfehlung Netzanschluss für Photovoltaikanlagen (PVA) in NE7





Verschiedene Optionen ...

Zentraler NA-Schutz mit zentralem Kuppelschalter ab 30kVA (Stand 2020)

Zentraler NA-Schutz mit integriertem Kuppelschalter

Kein Externer NA-Schutz, sonder NA-Schutz-Funktion des Wechselrichters

oder eine Kombination?

Unterschiedliche Kosten, Vor- und Nachteile, Risiken, und vor allem Unsicherheiten

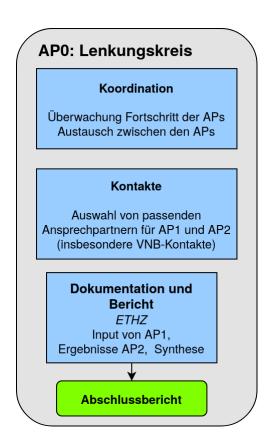
→ Projekt soll diese klären

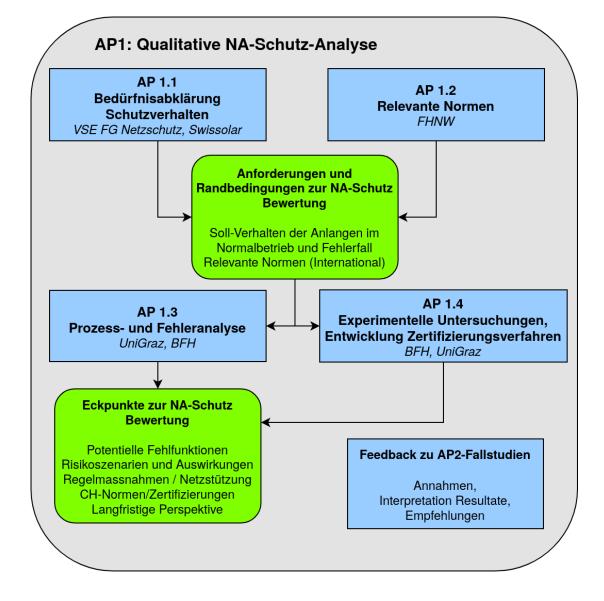
Eckdaten BFE-Projekt NAEEA+

- Budget: Gesamt Budget 619'200 CHF, Förderung durch BFE mit 240'000 CHF
- Förderung als P+D Projekt: Kein Forschungsprojekt, sondern Demonstration einer These:
 "Durch Koordination kann ein tragbarer Konsens für die NA-Schutz Frage gefunden werden"
- Ziel ist, alle Bedenken, Argumente und Probleme rund um die NA-Schutz-Frage systematisch zu sammeln und wo nötig genauer zu untersuchen.
- 3 Partner aus der Schweiz (ETHZ, BFH, FHNW)
- 3 Partner aus Deutschland und Österreich (TU Graz, FGH, Holger Kühn)
- Breite Unterstützung durch die Branche:
 - VSE + ca. 18 VNB
 - Swissolar, VSEK
 - Swissgrid
 - ca. 3 Hersteller

Mitarbeit in Arbeitsgruppen als "Leser" oder "Impulsgeber" weiterhin möglich.

Ergebnisse fliessen in neues Branchendokument (NA/EEA-NE7) ein

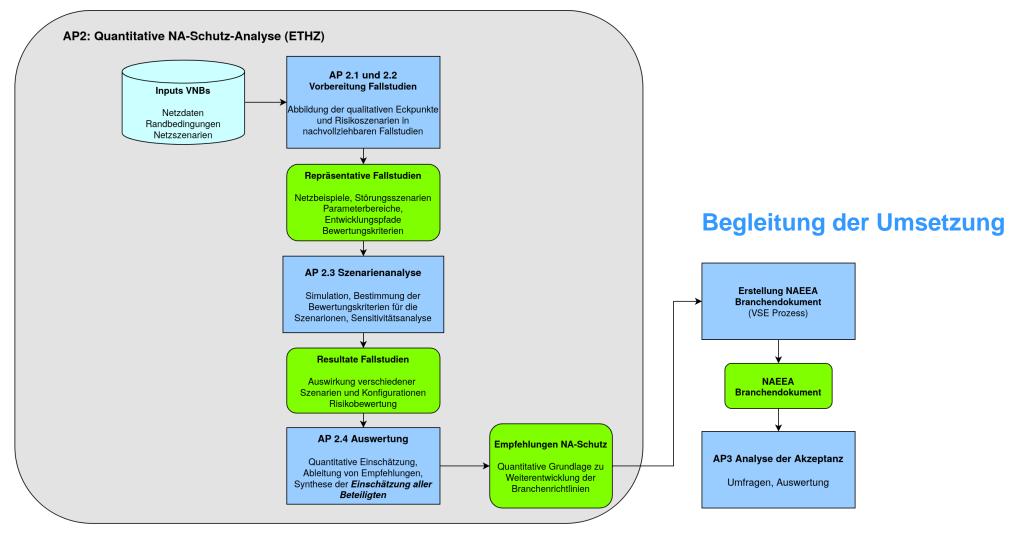




Projektstruktur

Aufnahme und Auswertung aller Aspekte, Bedenken, Randbedingungen

Koordination, strategische Entscheidungen



Projektstruktur

Quantifizierung und Extrapolation der Ergebnisse von AP1 für Gesamtschweizer Aussagen

Geplante Resultate

- In Vorbereitung bis Sommer 2023:
 - Grundlagendokument zum NA-Schutz
 - > Zusammenfassung Störszenarien
 - Online Fragebögen mit VSE-Tool
 - > Dokument zu relevanten Normen
 - > Simulation eines Störszenarios in Beispielnetz
 - Bericht der Testprotokolle für NA-Schutz und Publikumspräsentationen
- Weitere bis Sommer 2024:
 - Qualitative Risiko-Bewertung der Störszenarien
 - Quantitative Simulation von Störszenarien
 - Ableitung einer Empfehlung für NA-Schutz-Richtlinien

•

Resultate: Übersicht relevanter Normen

- Schweiz
 - VSE-Empfehlung NA/EEA
 - Swissolar NA EEA PVNE7 2021
 - ESTI Weisung 220:0621
 - Niederspannungs-Installations-Norm (NIN 2020)
 - > SN EN 50549-1
- Ausland:
 - EN 50549-10 Requirements for generating plants to be connected in parallel with distribution networks
 - TAR NS (VDE-AR-N 4100 / 4105)
 - > VDE-V-0124-100

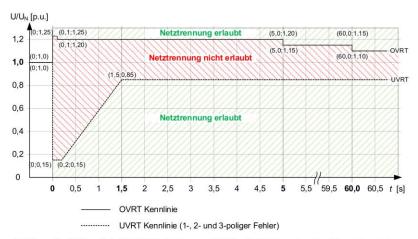
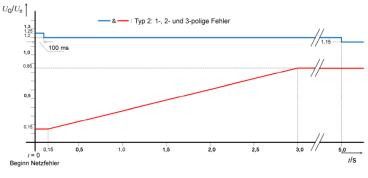



Abbildung 7: u(t)-Kennlinie für FRT-Verhalten von EEA Typ 2 (nichtsynchron) und Energiespeicher

Legende

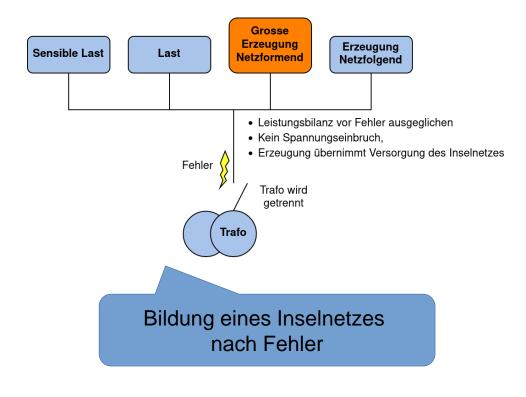
- & FRT-Kurve für 1-, 2- und 3-polige Netzfehler

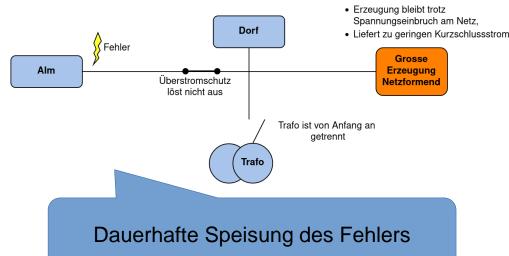
UG Effektivwert der aktuellen Spannung an den Generatorklemmen

Bild 12 – Fault-Ride-Through-Grenzkurve für den Spannungsverlauf an den Generatorklemmen für eine Erzeugungseinheit vom Typ 2 und für Speicher

Vergleichende Betrachtung der Richtlinien und Kennlinien

Resultate: Potentielle Störszenarien


Allgemeine Fragen:


- Risiko Montagefehler / Einstellungsfehler bei PV-Anlagen, Firmwareupdates
- Interner NA-Schutz des WR: Was passiert bei Versagen?
- Probleme, wenn NA-Schutz fehlt
 - Unter-/Überspannung oder Unter-/Überfrequenzen
 - Speisung von Kurzschlüssen und Inselnetzen
 - Verhalten h\u00e4ngt vom Typ der Anlage ab (netzfolgend oder netzformend mit Notstromfunktion)
- Probleme, wenn "zuviel NA-Schutz" vorhanden ist
 - Schalter in Serie, verfrühtes Auslösen
 - Mehr Fehlerquellen, aber eher bei systematischen Fehlern krititsch

SWISSOLAR 📜

Vielen Dank für Ihre Aufmerksamkeit!

Kühn – Netz und Systemschutz

SWISSOLAR